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Chapter 1
Introduction

A wider usage of computers in the business setting started in the 1960s [185,
Chap. 1]. The first task companies used computers for was the automation of simple
routine tasks like payroll amount calculation. More business areas such as financial
accounting, order entry, and billing soon followed. At that time, many of these tasks
were semi-automatic with users entering information interactively and the system
completing the task at a later point in time.

As hardware and software advanced, more and more business users started to
interact with the electronic business data to process business transactions. Rockart
[175] states that by the end of the 1970s, the more effective and increasingly
efficient technology resulted in systems that were oriented at the end user, like
online data inquiry and analysis. These were rapidly becoming widespread in
major organizations [175] and system interaction with instantaneous processing of
business data emerged. Instead of collecting all business transactions and processing
them as a bundle in the evening or at night (batch processing), requests were
now processed immediately and results were provided directly. The term Online
Transaction Processing (OLTP) refers to this instant interaction with the business
systems.

Today, online transaction processing powers the record keeping systems that drive today’s
commerce, services, and government. – Lindsay 2008 [130]

As quoted, OLTP systems are the backbone of today’s information systems,
supporting the daily operations of companies. All incoming business requests, such
as the creation of sales orders, requests for information of customers, suppliers, and
other business partners, incoming payments, as well as internal production processes
are recorded, monitored, and processed using these systems. For OLTP systems
performance is a key element. If the OLTP system was not able to keep up with
business operations, results may not be readily available and incoming order may
be delayed, resulting in loss of profit.

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9 1,
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2 1 Introduction

Business enterprises prosper or fail according to the sophistication and speed of their
information systems, and their ability to analyze and synthesize information using those
systems. – Codd et al. 1993 [43]

Codd et al. [43] coined the term online analytical processing (OLAP) during a
period in which a lot of discussion took place around the coexistence of transaction
processing systems and systems to support decision making. They define OLAP
as the “dynamic enterprise analysis required to create, manipulate, animate, and
synthesize information.” From a technical perspective, “[t]his includes the ability to
discern new or unanticipated relationships between variables, the ability to identify
the parameters necessary to handle large amounts of data, to create an unlimited
number of dimensions (consolidation paths), and to specify cross-dimensional
conditions and expressions.” [43]

According to Codd et al. [43] the success of an enterprise is directly linked to
the quality, efficiency, effectiveness and pervasiveness of its OLAP capability and
the number of individuals within an enterprise, that have a need to perform more
sophisticated analysis is growing. However, the tools developed at that time lacked
the ability to analyze data in multiple dimensions, which is the feature that is the
most useful to enterprise analysts [225].

Corporate data is growing consistently and rapidly and the need for sophis-
ticated analyses with it. Since its introduction in the 1990s realizing the need
and importance for advanced enterprise analytics, the work around OLAP has
been established as an own application area next to transaction processing and
its applications. Although the data that is central to both application areas is the
same, i.e., the business data created during the daily operations of an enterprise,
applications of both areas rely on their own systems that are optimized for the
respective requirements of these applications.

Implications of Separating Analytics from Transaction Processing

The separation of the two areas obviously offers the advantage that analytical
processing does not affect the performance of transaction processing. Furthermore,
the specialized systems for OLAP and OLTP allow optimizations specific for their
applications to achieve maximum performance. While normalization techniques are
popular in OLTP database design [30], traditional OLAP systems rely on summary
data and pre-computed aggregates to speed up data analysis in multiple dimensions
and hierarchies [229]. Deciding what to prepare and how much to pre-compute is
difficult because it can result in an unwanted explosion of storage space necessary to
store the data [188]. Consequently, the data present in the OLAP system contains a
selected subset of the transactional data identified as necessary for strategic analysis
and prepared for fast reporting. The up-front decision which data to choose and
prepare limits the flexibility of reporting at a later point in time. “Pre-aggregation
is fast, but inflexible” [60] and works best in environments where the user’s options
to define new queries are limited. New reporting requirements based on data not
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present or not prepared in the analytical environment have to wait until the respective
data is prepared and the needed structures are established.

Data preparation based on previously defined reporting requirements entails
that data in the analytical environment is aggregated or summarized. Thus, data
is available on a lower level of detail compared to the former “raw” transactional
data. The advantage is that storage requirements are reduced. The disadvantage is
that reporting queries can only rely on the pre-defined data. As a result, queries that
require information that is more detailed cannot be answered.

Although differently optimized, the data is stored redundantly in the different
systems and has to be synchronized. Data is extracted from one or several source
systems, transformed into the OLAP-optimized structures, enriched (e.g., with
external data), cleansed, and loaded into the OLAP system. This Extraction,
Transformation and Load (ETL) process that keeps the OLAP data synchronized
with the OLTP data is the most expensive and time-consuming part of setting up
an analytical system [120, Chap. 11] and 55 % of the running costs of the analytical
system go into refreshing the data from the operational environment [107]. The
process of refreshing the data is launched at intervals. These intervals may vary
from minutes to days or weeks, meaning that reports, which run in the analytical
system, have to necessarily be based on data that is no longer up-to-date.

An advantage of keeping the OLAP system separate from the OLTP system is
the integration aspect. Larger companies may have multiple OLTP systems and use
the OLAP system for consolidation and strategic analysis of data across several of
their systems or they may even include data from external sources.

Why Unite OLTP and OLAP Systems Now?

The above question can be tackled from two sides. The first side is the hardware
perspective. The advance of technology enables the unification. The second is the
perspective of the applications that benefit from the unification. As companies
are continuously adapting to market requirements, their workloads are changing
accordingly. Some of the changes in operational and analytical applications over
the last decade are so fundamental that the validity of the separation of analytical
processing from transaction processing needs to be reevaluated.

The results of a survey concerning the reach, trends and future directions of
data warehousing targeted at 421 data managers and professionals conducted in
2011 [139], confirm the above statement to reconsider the current system setup of
transactional and analytical processing. McKendrick [139] summarizes from the
results of the survey that data needs to be available in real-time to be of value and
a larger set of users, besides the traditional analysts, as well as critical business
applications need to gain access to analytical functionality. Furthermore, 42 % of
the respondents stated that their data warehousing platform is going to be replaced
within 5 years to stay in competition on analytics and manage the growing data
stores. With efficiency and cost cutting as the main goals, organizations feel the need
to consolidate OLTP and OLAP applications onto a single platform. The survey
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provides detailed statistics that 40 % of the respondents claim to be already using a
single server for some instances of their OLTP and OLAP applications and 37 % are
considering the consolidation of OLTP and OLAP applications on the same server
in the future.

The Hardware Perspective

[W]hat is economical to put on disk today will be economical to put in RAM in about 10
years. – Gray and Shenoy 2000 [75]

Hardware is developing rapidly. According to Gartner [70], in-memory data
management approaches will enter the mainstream as cost and availability of
memory intensive hardware platforms reach tipping points in 2012 and 2013.
Harizopoulos et al. [90] stated in 2008, that many OLTP systems already fit or will
soon fit into main memory. Keeping enterprise data completely in main memory
allows direct optimization of access for this storage and casting aside the disk
access strategies. Accessing data directly from main memory instead of having to
pass it up from disk, results in a speed-up of operations as well as a simplification
of architectures and applications. The reason is that the disk access itself can be
dropped and caching as well as pre-fetching strategies so far used to optimize disk
access can be discarded. Nonetheless, the value of disks for back up, logging and
archiving remains unchanged.

Multi-core processing and multi-processor systems are another advance of
hardware introduced in the 2000 decade. By now, they are widely used. The first step
towards multi-core processing was the Intel Hyper-Threading Technology [136].
It lets a physical processor appear as two identical logical ones and allows for
two tasks to be executed in parallel increasing processor utilization [48]. Koch
[122] states that multi-core processing extends Moore’s Law [145] into the future
despite the fact that clock speed increase has stopped in 2003 [201]. Multi-core
processing and multi-processor systems provide the basis for high-volume and
massively parallel processing that is necessary for enterprise OLTP systems with
their large number of users and also builds the foundation for OLAP systems to
process large data volumes faster through parallelism.

Another important advance was the introduction of on-chip memory controllers.
This advance strives against the data supply bottleneck between main memory and
the increased number of processing units by reducing the memory latency and
allowing the memory bandwidth to scale with the number of processing units [83].
HyperTransport [4] and QuickPath Interconnect [110] were introduced as serial
point-to-point links for fast inter-processor and chipset communication. According
to Loos et al. [133], the complex database designs so far used in analytics, for
example, indexes and materialized views become obsolete as it becomes affordable
to scan through the data all the time. The ability to remove those specialized
structures that were previously necessary for fast OLAP further encourages the
notion of bringing the data for analytical processing and transaction processing
together.
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The Workload Perspective

Nambiar and Poess [149] analyze Moore’s law with respect to transaction
processing systems and show that even on this higher level, involving not just
the processor perspective, but the total system perspective, a close resemblance
to Moore’s predictions is achieved. Transaction processing systems have been
and most probably will be capable of running ever-larger transaction processing
workloads with a growth that closely resembles Moore’s predictions. This study
emphasizes the ability of current and future systems to meet today’s and tomorrow’s
transaction processing requirements. On the contrary, OLTP systems are not
growing exponentially like Moore’s predictions because the real world entities,
they record information about, do not scale with Moore’s law [90]. Thus, the study
underlines the potential of OLTP systems to handle the increased load created by
the addition of OLAP given the fact that the need of materializing structures for
OLAP disappears and the structures of the data sets underneath both workloads
converge.

Applications that have further evolved in the past decades and which do not
clearly fit into the OLTP or OLAP world are another aspect worth examination.
Business application examples here are dunning and available-to-promise (ATP)
Plattner [167]. These applications are running in the OLTP system, as they require
up-to-date data. However, to compute the results they need to process large volumes
of data, for example in the case of dunning, all or a set of customers of a company,
their invoices and payments to determine which customers have overdue payments
and previous actions to find out their dunning level. Workarounds have been
introduced to reduce the impact such applications so far have on the currently
used OLTP systems. Examples for these workarounds are running the applications
during low system load times, e.g., at night, and/or splitting up the data set involved
like scheduling dunning runs for selected groups of customers. ATP is a business
function that computes the availability of products and their delivery due dates
based on resource availability and provides a response immediately upon a customer
inquiry. Here, scheduling the computation at a later point in time is not applicable.
Instead, aggregates are pre-computed, materialized, and updated during transaction
processing to reduce the response time of ATP checks in current systems. This pre-
computation is very similar to the approach taken in current analytical systems to
support reporting. Plattner [167] illustrates how dunning and ATP can be changed
when leveraging the technological potential of a database system developed to serve
transactions and analytics based on the same data store.

Krüger et al. [125] show in their analysis of enterprise applications and the
resulting workloads that in OLTP systems more than 80 % and in OLAP systems
more than 90 % of all queries are read-only. The results for the OLAP systems is in
accordance with their expectations, but the high share of read-only queries with
more than 20 % range selects in the OLTP systems has not been expected as
traditional workload definitions assume a larger share of write access and simple
queries with highly selective query terms [62]. Krüger et al. [125] conclude that
this query distribution leads to the concept of using a read-optimized database that
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supports the required amount of insert and update operations for both transactional
and analytical systems.

Raden [174] states that analytical systems are becoming more proactive, real-
time, and operational. Thus, analytical applications emerge whose characteristics
diverge from the so far accepted “typical” characteristics of OLAP applications for
which OLAP systems are optimized. OLAP systems are being adapted accordingly.
Besides the fact that OLTP and OLAP systems are coming together in the sense
that either side adopts structures and optimizations typical for the other side, the
interest in hybrid OLTP and OLAP systems has also grown in the database research
community spawning several prototypes, e.g., HyPer [117], OctopusDB [55], and
HYRISE [80].

The recent developments in hardware, OLTP and OLAP workloads, their
underlying systems, the growing interest in the research community, related research
activities and product developments in the industry, in particular those introducing
new database systems and prototypes, show the necessity for this work and
strengthen its importance.

1.1 Problem Statement

With the reunification of OLTP and OLAP and the development of hybrid systems
for this combined workload, the need for means to study and evaluate these
combined systems arises. Benchmarks are the standard method to evaluate and
compare database systems and support their development. They help to assess the
performance and cost-performance ratio of existing database products for analytical
and transactional processing. Due to the separation of OLTP and OLAP systems,
existing benchmarks are only focused on either domain so far. With the unification
of the two workloads and the rise of hybrid database systems, benchmarks to assess
these systems are required as well. This thesis introduces a benchmark for hybrid
OLTP and OLAP systems and the first research question is concerned with the
development of this benchmark.

The implementation of a chosen database product in a productive environment
is only the first step. Afterwards follow the tasks of configuring the database for
the detailed requirements of the environment and optimizing the database design
according to the specific access patterns of the business applications used by the
company. The second research question addresses these tasks in the context of
logical database design. Reuniting OLTP with OLAP affects the entire design
of the database starting at the logical layer. Database schemas as part of the
logical database design layer are optimized for one or the other workload. The
new benchmark is applied in quantifying the impact of selected logical database
design optimizations typically employed in OLTP and OLAP systems under a mixed
workload. This evaluation serves as an application and validation of the proposed
new benchmark.



1.1 Problem Statement 7

Question 1: What is a suitable method to evaluate and compare hybrid
systems?

A benchmark for hybrid OLTP and OLAP systems is an important pillar in
the development of these systems. Benchmarks play an important role in the
development of databases for business applications. On the one hand, companies
are able to assess if functionality and the cost-performance ratio are a fit before
deciding on a solution and implementing it. On the other hand, database vendors
advance their products based on the requirements provided by database benchmarks
that reflect the requirements of real companies.

• What to use as the foundation for a new benchmark? There are three alternatives
to create a benchmark for mixed workloads. These are (i) combining two existing
benchmarks, that is, merging an OLTP benchmark with an OLAP benchmark,
(ii) extending an existing benchmark with the other workload, or (iii) creating a
completely new benchmark. A new mixed workload benchmark must adhere to
the workload characteristics of current enterprise systems to provide reliable and
relevant results.

• How to simulate hybrid workloads? For a combined workload of OLTP and
OLAP, workload mix as a new parameter has to be introduced. In a benchmark
setting of either transactional or analytical processing, the workload that is simu-
lated closely resembles a typical company. A hybrid setting has to comprise both
analytical and transactional operations. Transactional and analytical processing,
however, should not only be simulated in equal shares as different companies
have different workload characteristics and varying the workload shares impacts
resource usage and design decisions for the database. Thus, workload mix, as the
variation of the transactional and analytical share in the entire workload, has to
be introduced.

Question 2: What is the impact of database schema optimizations
in a mixed OLTP and OLAP environment?

Database design of OLTP and OLAP systems so far has contradicting optimization
goals. In addition, both workloads are subject to variation. According to day, week,
month, or period-end reporting the OLAP workload can peak at certain times. The
same is true for OLTP, for example, corresponding to seasonal peaks in customer
orders. For such variations the automatic adjustment of the physical database design
elements is already subject to research, which is expressed, e.g., in the creation or
deletion of indexes according to current workload situations [3]. The focus of this
research question lies in understanding the impact of logical database optimizations
that need to be adjusted besides physical optimizations like indexes or views.

• What is the impact of mixing OLAP with OLTP? Before determining the impact
of specific optimizations in logical database design, the behavior of databases
when combining the two workloads has to be analyzed.
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• What are typical logical database optimizations? The optimized database
schemas of transactional and analytical processing represent the opposite ends of
a scale. While transaction processing schemas are optimized for high throughput
of write operations and highly selective read operations, analytical systems are
optimized for company-wide information retrieval requirements reading large
amounts of data. In a hybrid setting, the database schema has to be optimized
according to the workload mix and prioritized operations.

• What is the influence of database schemas that utilize different optimizations?
This influence on queries has to be determined to support making a decision for
specific schema optimizations. A certain schema optimization can have a positive
impact on the execution of a subset of queries of the entire mixed workload while
impeding the performance of other queries. The quantification of this impact and
its understanding is the first step towards making a decision on using a particular
optimization in a mixed workload scenario.

• What are additional factors that influence the performance of database design
in a mixed OLTP and OLAP environment? Workload mix is not the only factor
influencing the decision of which database schema is best suited in a specific
setting. The type of database, that is, its storage layout, is another important factor
of influence. In the OLAP environment, both column and row-oriented physical
storage layouts are common, while row-oriented storage is still the prevailing lay-
out of databases underneath OLTP applications. The same schema optimizations
on top of different storage layouts may have different impact on queries.

1.2 Contribution and Scope

According to the questions identified in the previous section, the contributions of
this thesis are in the areas of benchmarking and understanding logical database
design decisions in mixed OLTP and OLAP workload scenarios. The contributions
and adjacent works have been published in international conferences, workshops,
and journals.

Benchmarking

Existing benchmarks targeting relational databases in OLTP or OLAP environments
are compared and discussed with regard to observations from current enterprise
workloads. Enterprise workloads have evolved since the creation of the benchmarks
widely in use today. Yet, the benchmark workloads remained the same since their
specification with minor changes to requirements.

The review of existing benchmarks and observations of current enterprise
systems provide the foundation for the definition of the composite benchmark for
transactions and reporting (CBTR) proposed in this thesis. CBTR is based on a real
database design and it provides realistic queries to simulate different workloads.
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The scenario for CBTR, its conceptual entities for the definition of the data set and
operations are completely specified and a set of analytical queries that can easily be
extended is provided based on examinations of current OLAP systems. Workload
mix has been introduced in CBTR as an additional parameter besides data set size
and load (number of parallel users) to control the shares of the operational and
analytical workload parts. The specific database schema used in CBTR is identical
to what can be found in a widely used and current OLTP system.

Early concepts for CBTR have been published at the Symposium on Advanced
Management of Information for Globalized Enterprises (AMIGE) in [14]. This work
includes the conceptual design of the benchmark, database schema, and the actions.
A more detailed specification of the scenario, transactions and queries, and the
unique properties of the new benchmark were published in the Information Systems
Frontiers Journal [16].

A prototypical implementation of a tool chain to run the benchmark is also part
of this thesis. This tool chain provides the driver to run benchmark tests, supports
the evaluation of benchmark results, and supplies a monitor to run benchmarks
interactively to test different workload mixes and immediately observe the impact
on query and transaction performance. Using this tool chain, the impact of mixing
OLTP and OLAP can be quantified for any database system based on realistic data
structures and workloads.

Details about the implementation of the benchmark driver for CBTR have
been published at the International Conference on Industrial Engineering and
Engineering Management (IE&EM) in [15]. The paper proposes a configurable
simulation framework that can be used to validate existing database systems and
their ability to handle the transactional and analytical workload in parallel. The
interactive performance monitor that utilizes the benchmark driver developed for
CBTR has been demonstrated at the International Conference on Management of
Data (SIGMOD) [19]. This performance monitor allows the direct observation
of the impact of changing shares within the workload and to interactively assess
behavioral characteristics of different database systems under changing mixed
workload conditions.

Logical Database Optimizations in Mixed Workloads

Data models used in the past and currently used in transaction and analytical
processing are reviewed and discussed to create a deeper understanding of where
the optimizations within today’s OLTP and OLAP systems originated.

On the base of the previous review of data models in transaction and analytical
processing, logical database designs are analyzed. The focus lies on database
schema optimizations employed in typical operational and analytical environments.
This analysis contributes an overview of the key differentiators employed today that
set apart OLTP and OLAP optimized database schemas. Based on the differentiators
several variants of CBTR’s database schema are defined that employ particular
optimizations or avoid them.
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The implemented benchmark driver as part of the previously mentioned tool
chain is designed in such a modular way that only little effort is necessary to
exchange the database schema and adapt the transactions and queries accordingly.
The performance impact of different database schema variants is evaluated for
selected database systems and workload mixes as part of this work. This evaluation
serves as a validation of CBTR as assumptions about the results are met and
can be explained with the aid of implementation knowledge of the databases.
The results, furthermore, provide valuable insights into the behavior of existing
database systems under mixed workload conditions and show that the variation of
database schemas is an important factor that has to be considered when changing
the workload.

Insights from the analysis and evaluation of logical database design optimizations
have been published at the International Conferences on Performance Engineering
(ICPE) [17] and Performance Evaluation and Benchmarking (TPC TC) [18]. In [17],
initial insights on the impact of different database designs on query response times
in various workload mixes have been published. Details on the database schema
variants focusing on normalization are provided in [18]. These database schema
variants have been analyzed regarding their potential for performance improvements
under differing mixed OLTP and OLAP workloads. The results underline the
expectation that different database types (disk-based and row-oriented vs. disk-
based and column-oriented vs. in-memory and column-oriented) react differently
and, thus, a method to test and configure a given database in line with the workload
it is supposed to handle is highly relevant.

Further research conducted during the work on this thesis has targeted hybrid
architectures and topics derived from the combination of transactional and analytical
processing (see Appendix A).

The scope of this thesis comprises the development of a hybrid workload
benchmark and the analysis and evaluation of logical database schema optimizations
in mixed workload scenarios of enterprise OLTP and OLAP workloads. The
proposal and definition of the benchmark in this thesis provides the foundation for
a specification as compared to the specifications of established benchmarks such as
the TPC benchmarks.

With the actual application of hybrid database systems in business processing,
the database schema is bound to evolve to accommodate a mixed OLTP and OLAP
workload. The definition of final database schemas optimized for specific mixes of
OLTP and OLAP shares and specific database systems is beyond the scope of this
thesis.

A benefit of current analytical systems especially for large enterprises is to
provide analytics across several OLTP systems and potentially external data sources.
The need for reporting across multiple data sources will not dissolve by introducing
mixed OLTP and OLAP systems. It is an orthogonal research topic out of scope of
this thesis. Research is already active in that area, e.g., in federated query processing
efforts.

Other application areas for databases exist. These are, for example, bibliographic
databases as digital collections of references to published literature [152], statistical
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databases that store parameter data and measured data of experiments for statistical
analyses [186], scientific databases that share characteristics of statistical databases
but are subject to additional stages of data collection and analysis [187], search
engines, or service repositories. However, the focus of this work lies on data man-
agement for business processing. Results achieved in this area are not necessarily
applicable to the other areas named above. An evaluation of such applicability is out
of scope for this work.

1.3 Thesis Organization

This thesis is divided into eight chapters in three parts. The first chapter has
presented the motivation for mixed OLTP and OLAP workload benchmarking.
It stakes out the scope of this work, which lies in creating a mixed workload
benchmark as well as applying and evaluating this new benchmark in the context
of understanding the impact of logical database design optimizations for mixed
workloads.

Part I: Chapter 2 gives an overview of the most relevant and mainly used data
models and database design alternatives within the areas of transactional and
analytical processing. Examples of applications that cannot be classified as either
typical transactional or analytical and further arguments driving the reunification
of transactional and analytical processing are given in addition to related research
initiatives that aim at building hybrid OLTP and OLAP data management systems.
This chapter provides the basis for the later discussion and evaluation of logical
database designs for hybrid OLTP and OLAP workloads. An overview of existing
benchmarks in the area of data management and a discussion on their applicability
in the context of mixed workload processing is offered in Chap. 3. It also points out
key criteria that a new benchmark should fulfill and closes with a discussion on the
existing benchmarks and their relation to real workloads.

Part II: Chapter 4 introduces CBTR along with its scenario, the underlying
business process, the used data and database design, OLTP and OLAP queries. The
concept of workload mix as an additional parameter is introduced in this chapter.
The chapter closes with an examination of how the benchmark criteria from the
previous chapter are reflected in CBTR. Chapter 5 focuses on the variation of
database schemas within logical database design and proposes several variants that
contain optimizations relevant for transactional and analytical processing. These
schema variants are used in the following evaluation using CBTR to determine the
impact of the optimizations in mixed workload scenarios and to gain experience
how different database types behave under varying workloads.

Part III: Chapter 6 gives an overview of the tools that have been created around
CBTR. It presents all steps that are needed for a complete benchmark run, starting
from the preparation of a benchmark run, through running the benchmark, and
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finishing with the evaluation of the results. Chapter 7 presents the application
of CBTR in evaluating the impact of database schema optimizations under mixed
workload scenarios and in different database systems. The tested traditional
database systems behave as expected. This shows that the behavior modeled in
CBTR matches experience from real systems and it provides a first validity check
of CBTR.

Finally, Chap. 8 concludes this thesis with a discussion of the contributions and
areas of future work.



Part I
Background of Transactional

and Analytical Systems in Logical
Database Design and Benchmarking



Chapter 2
Enterprise Data Management for Transaction
and Analytical Processing

Enterprise data management has to support all business processes of a company
from storing and providing data during daily operations, for example, sales, purchas-
ing, and payroll accounting, to analyzing data for strategic decision making. Daily
operations are supported by transaction processing systems. A transaction process-
ing system contains applications that automate business activities [9, Chap. 1]. Sales
order processing is a typical example for such an application. Analytical processing
is provided by decision support systems. With their help, decision makers within
companies gain insights into daily operations from which they defer information for
making strategic decisions regarding the future of the company. Decision support
systems have experienced an explosive growth in the 1990s [29].

According to Haderle [84], in the 1960s and 1970s the focus of commercial data
management systems lay on batch and transaction processing environments. Batch
processing means the definition of jobs that execute multiple operations within one
request and that can run completely without user interaction. The response time
requirements of batch jobs are flexible meaning that a response does not need to
be produced immediately and they can be scheduled as resources become available,
for example, during non-peak periods. This facilitates the management of the limited
computing resources [9, Chap. 1]. Thus, batch processing was well suited to the goal
of data management systems at that time, which was to manage concurrent read
and write access to data, while minimizing resource utilization. Therefore, batch
processing was the major application model and for some application areas, it is
still today. In companies with a large customer base, dunning runs to determine
the customers whose payments are late are an example for which batch jobs are
scheduled in non-peak periods.

Transaction processing applications started to evolve at this time, too. Gray [72]
defines a transaction as a mechanism that queries and transforms the state of the
accessed data. A transaction is a fixed sequence of operations that have to be
completely processed or not at all. It can contain several statements clustering these
operations. The transaction concept emerged with four properties that incorporate
essential features needed by business applications. These are atomicity, consistency,
isolation, and durability (ACID [86]).

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9 2,

15

© Springer-Verlag Berlin Heidelberg 2014



16 2 Enterprise Data Management for Transaction and Analytical Processing

The isolation property means that events happening during the execution of
a transaction are hidden from other transactions that are running concurrently.
Gray et al. [76] originally introduced isolation in four degrees of consistency:
(1) protecting other transactions from updates of a transaction, (2) additional
protection from losing updates, (3) additional protection from reading incorrect data
items, and (4) additional protection from reading incorrect relationships among data
items. The other three properties were later defined in [73]. Atomicity ensures that
all operations within a transaction are completed or none is. Consistency means
that the data is left in a consistent state after the normal end of a transaction has
been reached. Durability ensures that the results of a transaction upon successful
completion are preserved by the system and that they survive any subsequent
malfunction.

Early transaction processing systems already provided the functionality to
interactively execute very short transactions, in a so-called on-line processing mode.
This is where the term online transaction processing (OLTP) stems from. In online
transaction processing, the changes and results are immediately visible as opposed
to batch processing. In the beginning of the 1980s, the first commercial relational
databases that enabled interactive processing appeared. Similar to OLTP, the term
online analytical processing (OLAP) expresses that decision makers interactively
work with the system.

This chapter presents the foundations that this thesis builds on. It describes
the most relevant and widely used database design alternatives within the areas
of transactional and analytical processing. The understanding of database design
decisions taken in the past and the reasons behind facilitate building tomorrow’s
hybrid systems and the benchmarks to evaluate and compare them.

Section 2.1 starts with the description of the data models used within
the databases for enterprise data management, explaining their characteristics.
Figure 2.1 presents an overview of past and today’s most commonly used data
models and underlying database designs in OLTP and OLAP systems. Early data
management was handled via flat files. To avoid implementing the access and data
modification logic in each application, database management systems emerged
as an abstraction layer that provides standard interfaces to manipulate data. A
database management system (DBMS) is a collection of interrelated data and a
set of programs to access that data. The term database refers to the collection of
interrelated data, which contains information relevant to, e.g., an enterprise [191].
In OLAP systems dimensional modeling appeared along with the multidimensional
and hybrid data models to better match the users needs. Concerning the relational
data model, different database designs were introduced that are used in OLTP,
OLAP, or in both kinds of systems.

The relational data model emerged as today’s most prevalent data model used in
business data processing in the areas of transaction processing as well as analytical
processing. Therefore, the scope of the subsequent sections is narrowed down to the
relational data model and the diversity of database designs within that area.

Section 2.2 covers database design alternatives and optimization opportunities in
the area of relational databases. For later discussions, it includes relevant aspects
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Fig. 2.1 Data management alternatives in OLTP and OLAP systems

from all database design levels: These are normalization on the logical level,
optimization of access paths on the physical database design level, for example,
indexes and views, and specific physical storage layouts used in database systems
for transactional and analytical processing.

2.1 Data Models for Transaction and Analytical Processing

Codd [40] gives a definition of the term data model as the combination of

1. A collection of data structure types,
2. A set of operators and rules to retrieve or modify data from any part of the

aforementioned data structure types, and
3. A number of general integrity rules that define consistent database states and

changes of state.

Codd [40] emphasizes that all three parts of this definition of data models are equally
important and argues that 2 and 3 are essential to understand how a structure based
on a certain data model behaves. Without a defined set of operations any application
using a structure has to be made aware of the structures internal workings regarding,
for example, the conjunction of parts of the structure.

All examples in this section refer to a customer order scenario. Figure 2.2
presents the conceptual overview of the entities and relations for this scenario
where customers order products and the respective products are being shipped to the
customers. Each customer can place as many orders for as many products as needed
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and can receive the ordered products in any number of shipments. According to, for
example, availability, products within an order are assigned to shipments.

In the following, the data models for transaction and analytical processing
systems that have been used at some point in the history or are still used are
introduced. Their characteristics, which led to the development of new data models,
are discussed, and finally they are compared according to their application areas.

2.1.1 Transaction Processing Systems

With the development of the first transaction processing systems in the 1960s,
respective data models to store and manipulate data through applications in a
standard way were introduced. Until the mid 1970s, most organizations used
file systems to organize their data in so-called flat files. Only a small number
used database systems [34]. The first database systems, developed in the 1960s
were hierarchical and network systems. The hierarchical and network data models
were afterwards defined as an abstraction from the real systems that already
existed [40]. In contrast, Codd [38] introduced the relational data model before the
implementation of relational database systems.

Flat File Model

The first step to manage data in a structured way was a simple organization of
data in records (sets of fields) that were stored in files. The name flat file model
or file management system stems from exactly this organization where the database
consists of one or more files containing records.
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To give a simple example, a company wants to store data about its customers
and the orders of its customers, i.e., the company’s sales orders. Using flat files,
two alternatives for storing such data are immediately conceivable: (a) one file that
includes records, with each record containing customer as well as sales order data,
(b) two files with one including records of sales order data and the other including
records of customer data. In alternative (a) the relationship between customers and
their sales orders is explicit within each record, but all records for different sales
orders of the same customer contain the same data concerning this customer. This
makes updates to customer data a hazard as all records concerning the updated
customer have to be changed. In alternative (b), this problem does not arise, but
applications have to handle the relationships between customers and their orders
themselves as flat files provide no concept for managing relationships.

Haderle [84] states that the flat file data organization already offered limited
concurrency and recovery functionality. These are a basis for transaction processing.
Moreover, since management of simple records did not include relationships
between records or different kinds of records, the knowledge about data organization
and determination of data semantics was left to the applications, i.e., no unified way
of accessing data and standard data operations were defined as part of this data
organization.

The drawback of this approach is that data access directly manipulates the
physical data organization. If several applications access the same data, the logic
for data access, interpretation, and operations has to be implemented in all of
them. These redundant snippets of code increase maintenance overhead. In addition,
advances in storage hardware technology introduce changes in the physical data
organization to utilize new features and these entail changes to the code within each
of the affected applications.

Hierarchical Model

An early work that separated the definition and layout of the data files from
their access was a program called Generalized Data Update Access Method
(GUAM) [163]. Access logic concerning data organization, maintenance, and data
integrity was moved from the applications into a separate layer. Consequently,
application code was simplified and the direct dependence of applications on
physical data storage was removed [163].

GUAM built on the concept that larger components are created from the
combination of smaller components resulting in a hierarchical structure [46, p. 24].
Thus, the hierarchical data model appeared in the 1960s out of the need to manage
tremendous amounts of data created by complex manufacturing projects, such as the
Apollo rocket project [47, p. 36]. In this context, IBM’s Information Management
System (IMS) was developed as a joint project with the North American Rockwell
Space Division based on the GUAM program. The joint project ended in 1968, but
IBM continued to develop IMS as a database and released it as a product called
IMS/360 Version 1 in September 1969 [138].
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Customer (CID, Name, Address)

Order (OID, Order Date)
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Shipment (SID, Date, Shipping Address)
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Order Line (Position., Quantity) Shipping Line (Position, OID, Order Line Position, Quantity)Order Line (Position, Quantity)
...

...

...

Product (PID, Name, Unit Price)
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Product (PID, Name, Unit Price)

...

b

Fig. 2.3 Logical structures of the hierarchical customer order hierarchy. (a) No order/shipment
mapping. (b) Direct mapping of shipments to order lines

The hierarchical model contains several levels starting from a root node, each
level with nodes that act as the parents of the nodes on the next lower level if there
is a relation between them. Consequently, the hierarchical model is a set of one-
to-many relationships between parent and child nodes. Each node is stored as a
record that maintains links to the node’s parent and its children. Different types of
nodes can be modeled in order to map diverse types of data entities, for example,
a customer entity that contains the name of the customer and his contact data,
or a product entity containing a description and pricing information. Applications
retrieve data from hierarchical databases by finding the root node of a tree and then
following the pointers stored in the records.

Figure 2.3 shows two alternative logical structures to model the customer order
hierarchy. Depending on frequent access paths one or the other alternative is of
advantage. Considering applications that frequently access shipments with no regard
of the associated orders, the structure in Fig. 2.3a is beneficial as the depth of the
tree that needs to be traversed is kept at a minimum and the number of branches
correlates with the number of shipments. In contrast, shipments are scattered
across orders in Fig. 2.3b, which benefits applications that rely on the relation
between orders and shipments, such as, reporting orders that have not been shipped
(completely).
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Fig. 2.4 Example hierarchy instances for the customer order hierarchy. (a) No order/shipment
mapping. (b) Direct mapping of shipments to order lines

Figure 2.4 exemplifies the aforementioned alternatives for the hierarchical
customer order hierarchy. Nodes in the hierarchical model are instances of entities,
e.g., a customer named C1. Listing 2.1 presents the orders and shipments depicted
in Fig. 2.4. Two customers C1 and C 2 place orders for the products P 2; P 3; P 7;

and P 8. The numbers provided in the order lines and shipment lines represent the
ordered and shipped quantities.

The different modeling alternatives introduce differing levels of redundancy.
While in the alternative in Fig. 2.4a only the product instances are repeated and
an overview of complete orders and shipments per customer is simply achieved
by scanning the respective subtrees, the alternative in Fig. 2.4b stores redundant
shipment data for each order line besides the redundant product data, but it simplifies
queries associating order lines with their shipments. For example, it is easy to
determine that the order for product P 3 of customer C 2 is split across two
shipments, that is, S36 and S41, but to analyze the contents of an entire shipment,
a scan of the complete subtree of this customer is needed.

Logical relationships were added in IMS/360 2.0 to efficiently handle many-
to-many relationships [138]. They interrelate segments from different physical
hierarchies building a logical hierarchy. Logically connected physical hierarchies
may constitute a network data structure, although application data is still stored in
one or more physical hierarchies [132]. Concerning the previous example, logical
relationships can help to avoid the redundant storage of product records: An own
hierarchy for products can be introduced and logical paths from the order line
records of the customer order hierarchy to these product records can be created.
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Customers = {(C1,"Werkstatt Hein","Rosenthaler Grenzweg
5, Berlin"),

(C2,"Mc Tools","361 Peachtree Street,
Atlanta")}

Products = {(P2,"Integral Panel Clamp C4.a",19.99),
(P3,"Split Point Drill 35mm",4.99),
(P7,"Machinist’s Chest XK044",209.00),
(P8,"Hot Ring Plier Set T68",27.00)}

Orders(C1) = {(O11,2011-01-05),(O12,2011-01-07)}
Orders(C2) = {(O21,2011-01-27)}
OrderLines(O11) = {(5,P2),(2,P8)}
OrderLines(O12) = {(3,P2)}
OrderLines(O21) = {(9,P3),(2,P7),(5,P8)}
Shipment(C1) = {(S34,2011-01-14,"Rosenthaler Grenzweg

5, Berlin")}
Shipment(C2) = {(S36,2011-02-03,"1055 Ashbury Rd.,

Fulton"),
(S41,2011-02-17,"1055 Ashbury Rd.,

Fulton")}
ShippingLines(S34) = {(5,P2),(2,P8),(3,P2)}
ShippingLines(S36) = {(6,P3),(2,P7)}
ShippingLines(S41) = {(3,P3),(5,P8)}

Listing 2.1 Order and shipment example

IBM’s IMS as the prevalent representative of the hierarchical data model is still
in usage for enterprise data management today and widely spread in banking and
insurance [121, 155].

Network Model

Similar to the hierarchical model, the network model has been defined after it
was already used in database system implementations. Network models have been
developed by the Conference on Data Systems Languages (CODASYL) Data Base
Task Group (DBTG) [37]. On that account, they are also called CODASYL database
models or DBTG database models.

Record types in the network model represent entities and set types represent
relationships between entities. Each set type has exactly one owner record type
and one or more member record types. The term record denotes a specific instance
of an entity. A specific relation of this record to other records is called set. Each
set contains exactly one owner record and zero or more member records of its
defined member record types. In contrast to the hierarchical model, many-to-many
associations can directly be represented by creating a new entity that represents this
association [202].

Figure 2.5 presents the network model of the customer order example introduced
in Fig. 2.2 according to the data structure diagram notation by Bachman [7]. Record
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Fig. 2.5 Network model for customer orders and shipments
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Fig. 2.6 Navigational routes through the customer order network model

types are depicted as rectangles and set types are depicted as arrows between record
types. The owner record type of a set type is connected to the tail of the set types’
arrow and its member record type is connected to the head.

In addition to defining the data structure, the network model sets up navigational
routes through this data structure to access data. This is similar to the pointers in the
hierarchical model. The navigational routes for a part containing customers, orders,
order lines, and products of the network model depicted in Fig. 2.5 are shown in
Fig. 2.6.

Through the network structure, entire contexts around entities can easily be
retrieved along the modeled navigational paths. A query that exemplifies the
advantage of the network structure over the hierarchical structure, assuming no
logical relationships have been defined within the hierarchy, is: Retrieve the top ten
customers with respect to the sales amount of the best-selling product of customer
C1. In the hierarchical model above this requires traversing all nodes in the subtree
of customer C1 to find the most-bought product and then traversing the entire tree
to find the top ten other customers as product data is stored in the leaf nodes. In the
network model the first step to find the best-selling product of customer C1 is the
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same, but then the Ordered set associated to that product can be used to find and
evaluate the orders of other customers. In this case, only customers having actually
ordered that product are considered.

To achieve a similar behavior in the hierarchical model, IBM IMS provides bidi-
rectional logical relationships [97] that are supported by a subset of its hierarchical
database types. With these, logical paths from order line nodes of one physical
hierarchy can be modeled that point to nodes of ordered products stored in an
another physical hierarchy and from the product nodes back to the first hierarchy to
all order line nodes that contain this product. In contrast to the network model, this
approach needs additional logical structures and pointers, increasing the overhead
for the DBMS.

Relational Model

In the late 1970s, IBM developed “System R” as an experimental prototype for
a DBMS that uses the relational database model (RDBMS – relational database
management system). According to Astrahan et al. [6] System R was intended
to demonstrate that a relational system can be used in real environments with a
comparable performance to the existing systems of that time. The structured query
language (SQL), initial called “SEQUEL” (structured English query language) [27],
was developed as a query language to retrieve and manipulate stored data in
System R. To test and evaluate System R, several installations at internal locations of
IBM were set up. The project ended in 1979 with the result that the relational model
is the basis for a viable database technology with commercial potential [93, p. 85].
Chamberlin et al. [28] came to the conclusion that databases on the basis of the
relational model are able to support many concurrent users, who perform repetitive
transactions and ad hoc queries. They argue that the high-level user interface enabled
by the relational database model positively effects user productivity for developing
new applications.

Along with System R, INGRES (Interactive Graphics and Retrieval System) was
one of the first projects to provide a proof of concept for a practical DBMS based on
the relational model. INGRES was started as a research project at the University
of Berkeley, California. The motivation behind INGRES was the utilization of
two basic characteristics of the relational model, namely, the high degree of data
independence and the possibility for a high level query language [199]. INGRES
included an own language called “QUEry Language” (QUEL). When SQL evolved
as the standard database language [50], INGRES was converted to supporting
SQL [93, p. 86], while continuing to support QUEL.

IBM’s System R and INGRES, however, were not the first to spawn a commercial
relational database for the market. Greenwald et al. [77] claim that Oracle V.2,
released in 1979, was the worlds first commercial relational database. According
to Hernandez and Viescas [93], the first commercial version of INGRES entered
the market in 1981. IBM announced its own RDBMS called SQL/Data System in
1981 [41] and shipped it starting in 1982. In 1983, IBM announced Database 2
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CID Name Address

C1

C2
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PID Name Unit Price
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Fig. 2.7 Relational structure for the customer order example

(DB2), which was shipped starting in 1985. DB2 evolved from System R, IMS and
technological advances made since then [85].

Compared to the network model, in the relational model an entity is represented
as one or more tables. Single instances of an entity or parts of that entity are
represented as a tuple within the tables that make up the entity. Relationships are
also represented as tables, with their tuples associating the tuples of other tables
(the instances of other entities) [143]. A tuple is a set of values, one for each
characteristic of the entity, also called attribute. To uniquely identify each tuple of
a table, a primary key can be defined as a subset of a table’s attributes such that
no combination of their values is encountered more than once within the table. In
contrast to the record (a tuple’s physical representation on the storage medium), a
tuple does not declare an order on the attributes it contains. The attribute values of
a tuple are accessed by their attribute names. Additionally, no order of tuples of a
table exists on the logical abstraction layer.

Figure 2.7 shows the relational structure for the customer order example given in
Fig. 2.2. In this structure, each entity is modeled as one table and the two relations
OrderLine and ShippingLine are modeled as tables as well. They include references
to those instances (tuples) of the entities taking part in the relation. For example,
the Product and Order attributes of the OrderLine table connect the respective order
and product instances. The relations Places and Receives are modeled as additional
attributes in the tables of those entities referring to them. For the Places relation this
means the attribute Buyer in the Order table and for Receives an attribute Receiver
is added to the Shipping table. Such references to existing tuples within other tables



26 2 Enterprise Data Management for Transaction and Analytical Processing

are called foreign keys if their elements are values of the primary key of another
table [38].

Basic operations for data retrieval in the relational structure are set operations,
such as, union, intersection, and difference and further typical operation are [69]:

• Selection: the restriction of the returned tuples to a subset defined by a condition
(also called filter). A term often used in context with selection is selectivity. It
is a measure of the size of the returned subset of tuples. High selectivity means
that the condition applies to only a small number of tuples, which are returned.
Low selectivity, in contrast, means that the condition is applicable to many tuples,
which are then returned in the result set.

• Projection: returns a specified subset of attributes from a table or result set for
the selected tuples.

• Joins: a conjunction of one table with itself or between different tables based on
conditions defined on attributes.

• Grouping: collocation of tuples in the result set based on the values of specified
attributes.

• Aggregation: summary of specified attributes according to a given function, such
as, average or summation, and a given grouping.

• Sorting: ordering of tuples in the result set according to the values of specified
attributes.

Entry point for data retrieval can be any table defined in the database. Navigation
is possible through any compatible pair of attributes of one table or different tables
rather than through predefined sets linking the tables.

Discussion of Data Models in Transaction Processing

Similar to file system models, the early hierarchical and network data models and
applications relying on them were connected too closely. Data was manipulated
via standard host programming languages. As a result, changes to the data storage
in order to leverage latest advances in hardware technology induced changes in
the applications to preserve functionality. This process endangered a companies
investment in existing applications, that would have to be changed over and over
again, causing additional costs [84].

Hierarchical models are very efficient for large amounts of data and provide
high transaction throughput, but do not allow very flexible relations and require
extensive application programming to use the database. Network models are more
flexible regarding data access paths and many-to-many relationships are easier to
implement than in the hierarchical model, but their structure can easily become
very complicated [151, Chap. 20]. In both, network as well as hierarchical models,
the database structure has to be designed around the access paths that applications
use most often. Logical relationships within hierarchical databases provide the
possibility to define additional access paths if needed, incurring some overhead
through extra pointers, but reducing redundancy.
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In contrast, a relational database is not restricted to specific application access
paths, but rather provides the means to model a data set in a logical database design
on which applications can work using a high-level query language. Through high
level query languages, applications are completely decoupled from the physical
representation of data on the storage medium [38]. Consequently, they are not
affected any longer by changes in physical database design caused by advancements
in hardware technology. The foundation for this independence from hardware
changes is the complete specification of the relational model including its operators
on top of which the high level interfaces are defined. The operators defined with
the relational model provide access capabilities for single entity instances as well
as for multiple instances at a time (called set processing). In the hierarchical and
network models, set processing in the sense of mathematical sets had to be handled
by the application programmers, who were forced to implement iterative loops to
navigate through the data structures and collect all data [42]. An example query is
the selection of the combined value of all sales orders in January. Some transaction
processing applications, for example, dunning, and especially analytical use cases
rely on set processing, though.

After the development of RDBMS, new database systems called object databases
emerged. They targeted the encapsulation of structure and behavior along the
lines of object-oriented programming. The object data model is not discussed in
more detail as object databases are less relevant for business systems but rather
established niche markets for application areas that rely on the management of
complex objects. In response to the development of object databases, RDBMS
vendors added extensions to their systems. Object-relational DBMS were the result,
offering similar functionality as the object databases on top of a relational model,
for example, access to the relational database through object-oriented routines using
the given standard interfaces (e.g., SQL). Object databases have established a market
for applications with special requirements directly benefiting from the functionality
offered by object databases, such as, computer-aided design, telecommunication
systems, or geographic information systems [53, Chap. 1]. Yet, they never set up
a strong foothold in enterprise data management [12].

Some database vendors optimized their data models for specific applications in
the 1980s to minimize computing resources [84]. An example was IBM’s IMS/VS
1.1.4 fast path feature for critical banking applications that increased throughput by
trading generality for specialized application program scheduling and data storage
techniques [138]. Restrictions included, for example, no support for inserts in
transaction mode or only providing one data access path [84]. Today, RDBMs
are widely accepted and used in transaction processing scenarios [92, Chap. 1].
Database systems based on the other models are still in use, however, for special
application areas that pose requirements that directly exploit their advantages. For
example, IBM IMS with its hierarchical database model allows for a very high
transaction throughput in settings that require complex data structures with many
hierarchy levels. Thus, use cases for the IMS database are found in the finance,
retail, and telecommunications industries, where management of highly complex
records and high transaction throughputs are a essential [155].



28 2 Enterprise Data Management for Transaction and Analytical Processing

Independently and in parallel with the development of hybrid databases based
on the relational approach, another movement has originated that promotes a new
kind of database systems that follow a non-relational approach. It is called NoSQL,
standing for “not only SQL” or “not relational”. According to Cattell [24], these
systems sacrifice some dimensions such as consistency, durability, availability, or
query support to achieve others, e.g., higher availability and scalability. Increasingly
variable document types and scalability issues in Web applications have created a
push for NoSQL in the Web developer community [127]. Yet, their application in
the enterprise environment is questionable. Stonebraker [198] states that NoSQL
databases are most often considered for update- and lookup intensive OLTP
workloads and not query intensive analytical workloads. This covers only a part
of today’s enterprise workloads.

While early data management systems possessed transaction processing func-
tionality as well as a wide range of decision support tools, developments in the late
1990s have resulted in an optimization of systems according to either the OLTP
or the OLAP application area. Specialized data models that emerged to support
analytical functionality efficiently will be discussed in the following.

2.1.2 Analytical Processing Systems

As transactional database systems became more sophisticated and stored more
data, analysis needs also became more demanding. The extensive supply of data
being stored in the transactional database was expected to be available for analysis.
Database manufacturers in the mid 1990s attempted to address the transactional as
well as the analytical side of business and even simple analytical queries took hours
to run, creating the problem of “Too Much Data, Not Enough Information” [61].
Another challenge that systems providing analytical functionality face is the rate
at which the needs and accordingly the requirements change. Since markets are
becoming increasingly fast-paced, enterprises have to plan and react similarly fast,
demanding the flexibility to serve new reporting needs, and include as much and as
detailed data as possible, for both historical and up-to-date data analyses.

Dimensional Modeling in Analytical Processing

In contrast to transaction processing with insert, select and update behavior, ana-
lytical query processing can be classified as a read-only workload considering the
actual user interaction. Bulk inserts to update data are executed in the background
or during low system load times to avoid affecting user interaction performance.
Queries are composed of complex data selection. The following query exemplifies
where the complexity in the selection lies:

Display the number of purchases per month, product category, and city for the first quarter
of 2011.
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For this query, the entire set of sales data for the first quarter of the year 2011
is scanned to compute the number of purchases. In a typical database design for
transaction processing based on the relational model, this would entail several
joins, for example, between sales order header and item tables, product data tables,
and tables containing region data. Especially the join of sales header and item
tables is expensive because these are tables where transaction data is collected
resulting in millions of entries according to business throughput. The dimensional
modeling approach [119] typically used in analytical database design avoids joins
between large tables and also reduces the number of joins compared to a normalized
transactional database design.

In the dimensional modeling approach, data is separated into dimensions and
facts. This separation stems from the classification of data into transaction and
master data. Transaction data is accumulated during daily operations of a company
and includes sales orders, payments, purchases, and production data to name just
a few. Master data is changed only infrequently [221] compared to transaction
data, that is changed with every business transaction. Examples for master data are
customer, supplier, product, or location data.

Dimensions contain master data clustered into groups, for example all product
specific data is stored in the product dimension, or time data in the time dimen-
sion [119, Chap. 1]. Dimensions are used for filtering and for creating the context by
means of which facts are aggregated according to selections within the dimensions.
Facts are numeric values from the transaction data [119, Chap. 1].

In the example query above, dimensions are Time, Product, and Location. The
fact to be aggregated is number of purchases. The time dimension is used for
filtering (first quarter of 2011) and the granularity level to aggregate the fact on
is month of the time dimension, category of the product dimension, and city of the
location dimension. Figure 2.8 shows an extract of the reporting result as a table
for this query. The level of granularity defines how much detail is provided about
the composition of the fact aggregate. Aggregating by product category and brand
would increase the level of detail, whereas the aggregation by country would remove
details from the report.

Typical operations based on the dimensional model include roll-up, drill-down,
slice-and-dice, and pivot [30]. The names for these operations stem from imagining
the dimensional data structure as a cube (in the case of three dimensions).
Figure 2.9a shows the cube for the example report given in Fig. 2.8. The roll-up
operation decreases the level of granularity, for example, showing the number of
purchased products per quarter instead of per month (see Fig. 2.9b). Drill-down is
an operation in the opposite direction, increasing the level of detail, for example,
products per week, instead of per month. Slice-and-dice restricts the result set or
relaxes restrictions on the result set according to further criteria on dimensions,
for example, only showing the top ten products sold in January (slicing operation,
see Fig. 2.9c), or only showing certain cities and categories (dicing operation, see
Fig. 2.9d). Pivoting is the operation of rearranging the multidimensional view of the
data. It is a table operation, for example, exchanging the columns and rows.
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Month

TotalCity Category 01/11 02/11 03/11

Hanover Pliers 2 9 4 15

Clamps 13 15 12 40

Drills 9 7 11 27

Subtotal 24 31 27 82

Munich Pliers 23 21 43 87

Clamps 31 29 35 95

Drills 54 97 67 218

Subtotal 108 147 145 400

Berlin Pliers 15 7 12 34

Clamps 25 37 22 84

Drills 23 19 15 57

Subtotal 63 63 49 175

Total 195 241 221 657

Fig. 2.8 Reporting result for the number of purchases per city, category, and month
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Fig. 2.9 Cube and operations for the number of purchases per city, category, month. (a) Cube
structure. (b) Roll-up operation. (c) Slicing operation. (d) Dicing operation
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From an application usage perspective, transactional and analytical workloads
differ largely. Transactional applications automate clerical data processing tasks.
These are structured and repetitive in their nature [30] and are concerned with
single or a small number of instances of an entity, for example, the sales order
of a specific customer and its associated line items. Transactions require up-to-date
data. It is essential that changes once committed are preserved, and that they are
not restricted by throughput or other resource scheduling constraints. Failures of
customer transactions, for example, due to throughput limitations can have a direct
impact on a company’s revenue and, thus, have to be avoided.

Analytical systems support employees, e.g. executives, managers, and analysts
to make better and faster decisions [30]. Much more data is accessed in one
report compared to a transaction, especially including historical data, like sales data
of a specific region for the entire past year. As analytical reports include many
dimensions by means of which facts are aggregated, the underlying queries can
become very complex, that is, contain many join, grouping, and sorting operations.
Using optimized multidimensional data structures to store data already prepared
for analytical needs reduces this complexity. Such data structures will be discussed
in the following. The nature of analytics lies in retrieving data from the system,
interpreting the results, and inquiring the reasons for unexpected results. Because
any inquiry is conceivable, a considerable share of analytical queries is composed
of ad-hoc queries. In many cases, they emerge from repetitive reports, for example,
from questioning irregularities in the results of a report to create the annual financial
statement.

Analytical Reporting Categories

Different categories of analytical reporting exist. Parameters for categorization are
the period of source data that is taken into account, the business focus for which
the analysis results are needed, or the primary users of the reports. Inmon [104]
introduces two categories of reporting: operational and informational. Operational
reporting analyzes the detailed transaction data of an enterprise with up-to-the-
second accuracy. Inmon names daily production records, or flight-by-flight traveler
logs as examples. The goal of informational reporting, in contrast, is strategic
analyses and longer-term decisions. Therefore, informational reporting focuses
mainly on summary data, such as, monthly sales trends or annual revenue by region,
and less on details. The main difference between the two is the freshness of the
data analyzed and the time window sizes that are analyzed. For the operational
side this means maximum freshness and minimal time slices (hours, days). For
the informational side it means less fresh data and longer periods to analyze, e.g.
months, quarters, or years.

In contrast to Inmon, White [220] distinguishes three categories of reporting:
strategic, tactical, and operational. Strategic reporting supports the execution of
long-term business plans and measuring the progress toward organizational goals,
such as growing market share or increasing revenues, based on high-level business



32 2 Enterprise Data Management for Transaction and Analytical Processing

performance metrics. A simple, but typical example for such a metric in the
context of sales order processing would be setting target net sales revenues per
region per quarter and monitoring their fulfillment in comparison to actual sales
numbers. The aim of tactical reporting is to monitor business initiatives, such as
marketing campaigns that are set up to ensure reaching the long-term goals. Tactical
reporting analyzes business operations within a time window of days, weeks, or
months. Compared to Inmon, strategic and tactical reporting are subcategories of
informational reporting, based on historical data, analyzing time frames of days
to weeks to months (tactical reporting) and months to years (strategic reporting).
Operational reporting, according to White and similar to Inmon is concerned with
daily business and is based on intra-day analyses. Credit card fraud detection and
inventory management are typical examples of operational reporting.

Data Storage for Analytical Processing

In the late 1990s, special OLAP systems evolved that solely focused on providing
decision makers with information. These systems organize data according to the
usage requirements of decision makers using a multidimensional paradigm suited
to model the natural structure of decision support problems [54].

According to the implementation of their data storage, analytical processing
engines can be distinguished into two basic types: These are relational OLAP
(ROLAP) and multidimensional OLAP (MOLAP) engines [32]. MOLAP engines
store multidimensional data directly in spatial data structures, for example arrays.
Queries from the front end are directly mapped to these special data structures. In
ROLAP engines, data is stored in a relational database with the engine implementing
efficient algorithms for analytical operations that translate between the above
logical multidimensional model and the relational storage model below. MOLAP
engines provide exceptional performance in accessing data since the dimensional
value combination of a fact is implicitly given by its address. However, as many
value combinations may not exist, for example, some products are not sold in
some regions resulting in empty values for facts in the associated array cells,
MOLAP structures can become sparse leading to a poor utilization of storage
space [30]. ROLAP does not suffer from this problem. If facts do not exist for a
combination of dimension values, nothing is stored. Consequently, hybrid OLAP
(HOLAP) approaches have been introduced to utilize the advantages of both storage
techniques. Dense regions of a cube could be stored using MOLAP and sparse
regions using ROLAP. Normalization of a data cube, that is choosing an appropriate
ordering of attribute values (dimension values), aims at distributing data of a cube
into dense and sparse regions, thereby increasing storage efficiency [115].

Relational databases are still the dominant choice as the underlying technology
for analytical processing systems [139]. Thus, this work will further focus on
ROLAP engines, instead of MOLAP and hybrid approaches.
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Data Warehouse, Data Mart and Operational Data Store

A data warehouse is a subject-oriented, integrated, nonvolatile, and time-variant
collection of data to support decision-making [108, Chap. 2]. Instead of clustering
data according to the processes like in operational systems, data is structured
according to the areas relevant for decision-making, leading to subject-orientation.
For a retailer, subject areas of interest may be sales, products, or vendors. Integration
means that data from several sources, for example, operational systems and external
services, is collected and provided in a single source. The nonvolatile characteristic
means that data already in the data warehouse is never updated. New data is added in
snapshots, resulting in a historical record of the operational data. Time-variance in
this context means that each data element is valid as of a certain point in time. Data
records may be given a time stamp or validity interval to determine their validity
period.

To create and update the data warehouse ETL tools are used. They transform
the source data to fit the analytical business needs and support loading of the
transformed data into the warehouse [214].

In many industries data warehouses are successfully employed. Their use cases
include order shipment and customer support in manufacturing, user profiling and
inventory management in the retail industry, claims, risk, and credit card analysis
in the financial sector, call analysis and fraud detection in telecommunications to
name but a few [30]. Although the idea is that a company has one data warehouse
that is managed centrally as a source for all company-wide reporting needs, it
is rarely achieved. Because of, for example, acquisitions and mergers the system
landscape of companies is heterogeneous in the analytical as well as the operational
domain.

In contrast to the data warehouse, the data mart contains customized data [101].
Inmon [102] defines a data mart as a data structure that is dedicated to serving the
analytical needs of one department within a company. Data marts are differentiated
into dependent and independent data marts. Dependent data marts are built from data
coming from the data warehouse. Independent data marts are built from data coming
from the operational systems. They are inexpensive to build, as organizational
groups can collect their requirements and set up a data mart based on data in the
operational systems without consulting other organizational groups. Inmon states
that the drawback of this inexpensive setup of independent data marts can be their
uncontrolled growth in the long term. For example, each department tries to service
its reporting needs. Yet, none of the existing data marts of other departments fits
their specific needs completely resulting in the creation of a new data mart. Thus,
it can happen that the same detailed operational data is redundantly stored in many
data marts that differ only slightly in their structure and context. Building dependent
data marts requires a larger amount of foresight, as requirements of different groups
have to be collected to build the basis for these data marts in the data warehouse.
However, while independent data marts service instant reporting needs, dependent
data marts provide a sound long-term foundation for information decisions.
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The different approaches to designing a data warehouse should not be dis-
regarded. Inmon’s approach mentioned above is one option. Another option is
Kimball’s approach [109] to design a data warehouse as a collection of dimension-
ally modeled data marts. Yet, another approach is using independent data marts
to design a data warehouse. This approach, however, is seen as inappropriate in
the data warehouse community as ETL steps are repeated unnecessarily and they
lack cross-department analysis and communication capabilities [114]. Kimball’s
approach achieves results quicker and simpler than Inmon’s, but a common criticism
is that it lacks enterprise-wide focus. Jukic [114] describes the different approaches
and outcomes of Inmon’s and Kimball’s methodologies as a trade-off between
extensiveness and power versus quickness and simplicity. A detailed comparison
of the Inmon and Kimball approaches can be found in [21].

Another structure in the analytical landscape that is complementary to the data
warehouse according to Inmon [108, Chap. 16] is the operational data store (ODS).
It is a subject-oriented, integrated, volatile, current-valued, detailed-only collection
of data to support a companies need of reporting on up-to-the-second, integrated,
operational data [100]. Subject-orientation and integration are similarities between
the data warehouse and the ODS. Differences lie in the freshness of data, the amount
of data that is kept in the ODS, and that data in the ODS is updated by overwriting
existing entries instead of adding another snapshot. Due to the updates, the ODS
contains no historical data. In the ODS only detailed data is kept, whereas a data
warehouse contains detailed and summary data. ODSs are categorized into different
classes according to the length of their update intervals affecting the freshness of
data they contain.

Figure 2.10 gives an example of how the different OLAP data stores can be
associated and shows possible flows of data between them. Sources of data can be
enterprise resource planning systems, files like spreadsheets, or external services to
name just a few. The ETL process between the data sources and the data warehouse
is not explicitly shown in this overview. A detailed comparison of data warehousing
methodologies including all of the three mentioned analytical structured is given
in [184].

Inmon [100] initially defined three classes of ODSs. Class I ODSs are kept
synchronized with the operational systems they retrieve data from, so that data is
available for reporting only seconds after it is inserted in the operational systems.
Class II ODSs are updated periodically every hour or in similar time intervals.
Updates to the operational systems are stored in an intermediate file, which is then
loaded into the ODS. Class III ODSs are subject to the same process, but the time
interval between data updates in the ODS can be 24 h or more. The business case
for class II and III ODSs is the most common [100]. Operational costs for class
I ODSs are much higher because of the immediate synchronization and business
cases justifying this class of ODS are rare [100]. A fourth ODS type (class IV)
was introduced later on. This class of ODS holds results of reports from the data
warehouse [105]. The rationale for the creation of this ODS class was that the data
warehouse did not provide responses in real-time. The Class IV ODS is able to do so
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Fig. 2.10 OLAP data stores and data flow in between

for a limited number of prepared reports, thus trading off fast response times against
freshness of data [106].

2.2 Relational Database Design

Database design incorporates the definition of the involved business entities, a
database schema, and additional structures to accelerate access to data. It is divided
into logical and physical database design.

[T]hink of the logical database design as the architectural blueprints and the physical
database implementation as the completed home. – Hernandez [92, p. 29], 2003

Figure 2.11 presents the steps taken in the process of database design. Logical
database design starts with the creation of the conceptual model. It specifies
what data is included from the business perspective and which relationships exist
between business entities [204]. The next step is the creation of the database-specific
implementation model, that is, a database schema. While a data model is a set of
mechanisms to structure data, a database schema is the definition of the structure of
a specific data set with the help of a data model. The database schema as the logical
design of the database has to be differentiated from the database instance, which is
a snapshot of the data in the database at a given point in time [191, Chap. 2]. For
relational databases, the database schema includes the definition of tables and the
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normalization of those tables corresponding to the semantics of data relationships,
which will be discussed in Sects. 2.2.1 and 2.2.2.

In 1980, Teorey and Fry [203] have classified logical database design into
Information Structure Design (ISD) and Information Structure Refinement (ISR).
Independent of the data model to be used, information structure design gathers all
application requirements into a preliminary high-level schema. This phase results
in entities, associated attributes that hold detailed information about the entities,
and relationships between entities. In the ISR phase, the results of the ISD phase
are further developed into a database-processable schema, for example, SQL table
definitions. This basic distinction has remained valid in later work. Only a change of
naming has taken place from ISD to conceptual modeling and ISR to comprise the
creation of the database-specific implementation model, for example, the relational
database schema.

Physical database design includes the definition of further access methods to
optimize data access, that is, indexes and views, partitioning of tables, and data
clustering. This amounts to structuring data with respect to specific machines and
optimization of performance regarding a particular workload. Physical database
design structures are presented in Sect. 2.2.3. Section 2.2.4 gives an overview of
database-specific storage alternatives that have a strong impact on transactional and
analytical processing.

2.2.1 Relational Database Schemas in Transaction
and Analytical Processing

Transactional relational database schemas follow the principles of normalization.
These were developed to achieve a database design with little or no redundancy
to avoid false relationships and inconsistencies [84]. In [39], Codd introduces the
objectives of normalization, that include obtaining a powerful retrieval capability
by simplifying the set of relations. Thus, undesirable insertion, update, and deletion
anomalies are removed. Additionally, the need for restructuring when adding new
types of data is reduced, which increases the life span of applications.
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a

b

Fig. 2.12 Example ROLAP structures for the sales order example. (a) Star schema. (b) Snowflake
schema

Analytical relational database schemas follow the dimensional modeling app-
roach and the according relational database schemas are the star schema and the
snowflake schema [54]. Figure 2.12 shows the star and snowflake schemas accord-
ing to the sales order example. The star schema (see Fig. 2.12a) is composed of a
central fact table and multiple dimension tables. The fact table contains data from
business transactions or a snapshot summary of that data. It is connected through a
many-to-one relationship to each dimension table.

To speed up joins between the dimensions and the fact table, which is relevant
for every OLAP query, join and bitmap indexes are used [123]. The snowflake
schema is an extension to the star schema (see Fig. 2.12b) to model hierarchies
explicitly, thus normalizing the dimensions. Thereby, redundant data storage within
the dimensions is reduced, but additional joins are needed if data from the outer
dimensions is required.

Even normalized schemas, for example, in third normal form (3NF) [39] are
employed in some analytical use cases, backing away from the dimensional model.
The different analytical database schemas are used in different kinds of data stores
that exist in the OLAP environment to cater for specific reporting needs. Martyn
[137] states that it is reasonable to use the star schema in a data mart, the snowflake
schema in a data warehouse and the 3NF schema in an ODS.
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2.2.2 Normalization

While reducing redundancy and avoiding false relationships and inconsistencies,
an increased level of normalization of a set of relations entails a penalty towards
data retrieval. Data that could have been retrieved from one tuple in a denormalized
design may have to be retrieved from several tuples in a normalized design.
Kent [118] acknowledges, that the highest level of normalization does not need
to be enforced, where performance requirements have to be taken into account.
Mullins [146, Chap. 12] advocates normalization by pointing out that a normalized
schema should never be denormalized unless a performance need arises, which
cannot be solved in any other way.

Denormalization can be observed in the data schemas of productive systems
for analytical processing as well as in transaction processing systems. Bock and
Schrage [13] give an overview of denormalization techniques that are utilized in
transaction processing schemas. Likewise, Mullins [146] discusses different types
of denormalization and describes where they can be useful. Of these, the types
redundant data, repeating groups, and derivable data can still be observed in today’s
transactional systems, mostly however because of legacy issues. Redundant data
means including additional columns of another table in one table if they are always
queried. This is only advisable if the included columns contain data that does
not change frequently. Repeating groups comprises adding more columns for an
attribute that can have multiple, but a limited and small number of values, instead of
normalizing it into an own table with a foreign key relationship. A typical example is
storing up to three telephone numbers for a customer. Thus, three telephone number
columns are used instead of three rows in a second table. Derivable data comprises
precomputing data and storing it in a column. An example is an extra column storing
the net sales value of an order instead of aggregating it from the order line items each
time it is requested.

In analytical systems, pre-joined tables and report tables are common. In pre-
joined tables, as the name says, two or more tables are stored in their joined form,
omitting redundant columns. Report tables are tables that already represent the
report based on the data that is otherwise stored in several tables and can only be
retrieved via complex SQL statements. Thus, the report results can be obtained
using simple SQL queries. The star and snowflake schemas are members of this
category. According to Martyn [137], the denormalization of OLAP schemas, that
is, the star schema in the data warehouse, is acceptable because of the read-only
character of the data warehouse and the opportunity of addressing potential update
anomalies during the ETL process. Furthermore, for data warehouses where query
performance is paramount, the snowflake schema is generally not recommended
because of the reduction in query performance due to additional joins [171,
Chap. 11]. Kimball and Ross also write that the “use of normalized modeling in the
data warehouse presentation area defeats the whole purpose of data warehousing,
namely, intuitive and high-performance retrieval of data.” [119, p. 11] Date [51,
Chap. 7] views denormalization in a critical fashion and believes “that anything less
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than a fully normalized design is strongly contraindicated” and that denormalization
should only be used as a last resort if all other strategies to improve performance fail.

2.2.3 Physical Database Design

Physical database design is the technical specification of tables and the definition
of additional structures to support query processing. The technical specification
includes table names, column names, data types, primary keys, and foreign keys.
Agrawal et al. [3] introduce physical design structures as any access path that is
supported by a database server. These include indexes, views, (multidimensional)
clustering, and partitioning of tables.

Indexes

Indexes provide alternative access paths to data items besides sequentially scanning
a table and searching for a specific value. At the cost of write performance and
storage space, indexes, thus, speed up data retrieval. Typical index structures are
B-Tree, hash, and bitmap indexes with B-Tree being the most common [172,
Chap. 8]. An index can be built on one or more columns and a table can have any
number of indexes. The trade-off between index maintenance and fast data access in
an ever-changing environment has to be considered. Some database engines support
storing tables directly in an index structure, for example, Oracle8i index-organized
tables [192]. The users or applications are typically not aware of indexes as the
query optimizer decides if an existing index is used for a query or not.

Views

Views are defined as virtual relations [46] or single-relation images of queries [135].
Views are dynamically created through a stored query from the underlying data
when required and may span one or more relations providing a subset of the entire
data. A typical use case for views is security, where specific users should only have
access to a subset of data, e.g. employees may view their own contract data, but not
contract data of their colleagues whereas the manager has access to all contract data
of his staff. In this case, users only have access to their dedicated view instead of to
the tables the view is based on.

Special cases of views are materialized views. Gupta and Mumick [82] describe
the materialized view as a view with its tuples being stored in the database. Thus,
a materialized view is like a cache that stores a copy of data or derived data for
quick access. A typical use case for materialized views in the OLTP as well as the
OLAP environment is to store pre-computed data [189]. A typical use case in the
OLAP environment is to efficiently implement the multidimensional structures for
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analytical cubes [87] or the aforementioned report tables. Depending on their type,
materialized views are updated upon changes to the base tables, which introduces
overhead to the write operation. The overhead of the update process, also called
view maintenance, should not outweigh the benefits achieved by creating and using
the materialized view.

Clustering

Clustering of tables is another approach to improve data retrieval for a particular
use case. Similar to storing a table in an index-like structure as described above,
clustering influences the actual storage of a table. Records with the same value for
a chosen attribute (or expression) are stored consecutively. Using more than one
attribute as the basis for clustering is called multi-dimensional clustering [161].
In this case, the chosen attributes have to be orthogonal to each other to allow
the creation of clusters. According to Lightstone and Bhattacharjee [128], multi-
dimensional clustering is a powerful technique that offers significant performance
benefits, especially for OLAP systems. OLAP queries directly profit from reduced
I/O and CPU costs through their multidimensional nature.

Partitioning

Partitioning refers to cutting a table into pieces: either horizontally into subsets
of complete tuples or vertically into subsets of complete columns. Horizontal
partitioning has been introduced to improve the manageability for tables with many
tuples. If partitions of a table are located on different machines, an additional benefit
is increased availability as only part of a table becomes unavailable if a machine
fails [57]. Vertical partitioning improves the performance of read access queries that
need only a small set of the columns of a table. For databases that use a row-oriented
physical storage layout partitioning according to query access reduces the overhead
of reading columns that are not necessary for a query.

All of the above mentioned physical database design alternatives have been
subject to research regarding the automation of design decisions. The question of
how to determine an optimal storage scheme reaches back almost as far as the
development of the relational model itself. Choenni et al. [36] define an optimal
storage scheme as “the storage scheme which has the lowest cost in processing
the workload defined on the database.” Because of the exponential complexity
of determining an optimal storage scheme, research has shifted to determining a
“good” storage scheme. A storage scheme is defined as “good” if an experienced
human database designer would produce the same or a worse scheme with the same
information content [36].

A variety of prototypes and tools exist that propose configurations for indexes
and materialized views, for example, AutoAdmin for Microsoft SQL Server [31],
or that automate partitioning, see Autopart for large scientific databases [162]. Zilio
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et al. [227] introduced DB2 Design Advisor, which takes into account all of the
above aspects of physical database design.

2.2.4 Database Storage

In addition to physical database design, aspects related to the data storage of
relational databases influence query performance. Data storage is specified by where
and how the data is stored. Aspects are the medium where the primary data set is
located and the resulting data transport path to the processor as well as the layout
of data in the primary location. The primary data location is the space where data is
stored. During query processing, data is read from the primary location if it is not
cached in a different possibly faster location. If changes occurred, data is written
back to the primary location or is cached and written back later. Today’s research and
productive OLTP and OLAP database systems can be categorized into disk-resident
and in-memory databases (IMDBs) [68] referring to the primary data location and
two major storage layouts, the row-oriented and column-oriented storage layout,
have evolved [2].

Disk-Based versus In-Memory Data Storage

IMDBs are less complex than disk-resident databases the main reason being that
disk I/O as a mechanical process is avoided [71]. On disk, data is stored in blocks. If
data is requested in a query, the block(s) containing the data need to be loaded from
disk into main memory from where further processing takes place. Blocks that are
read from disk are buffered temporarily in main memory. As a result, subsequent
accesses to data already in memory avoid accessing the disk, thus speeding up
operations. Other strategies are in place to avoid or reduce disk I/O. For example, if
a block is accessed, other blocks that are likely to be accessed in the future can be
pre-fetched from disk. Thus, subsequent queries for data from these blocks do not
require any disk access.

Simply avoiding the disk access step by putting a disk-resident database into
main memory can speed up operations. Yet, this strategy does not lead to the same
speedup a pure IMDB achieves [68]. In the case of using a faster primary storage,
such as RAM disks, the reason for the lesser speedup is that the algorithms tuned
for disk access are still in place. For example, data is still accessed as though it was
located on disk and is copied to a main memory area for further processing. This
step is superfluous as the database already resides in main memory, but the entire
process is faster nonetheless, as data is loaded from main memory and not from disk.

In the case of a completely cached disk-based database, data resides in main
memory in the same structure as if it was just loaded from disk, that is, in blocks.
However, data structures optimized for in-memory accesses instead of disk accesses
achieve further improvement fully cached disk-based databases do not benefit from
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PID Name Unit Price

P2 Intergrip Panel Clamp C4.a 19.99

P3 Split Point Drill 35mm 4.99

P7 Machinist's Chest XK044 209.00

P8 Hog Ring Plier Set T68 27.00
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Fig. 2.13 Example for the layout of data in row and column stores

without modification. An example is the storage of data consecutively instead of
in blocks. In IMDBs, logs are kept in non-volatile storage, such as, flash storage.
Snapshots of the database are also written to this non-volatile storage in regular
intervals to avoid loss of data.

Row versus Column-Orientation

The records of a table are stored consecutively in row-orientation. In column-
orientation, the attribute values of a column are stored consecutively, meaning that
each column of a table is stored separately. Figure 2.13 shows the Product table
from the customer order example from Fig. 2.7 in row and column-oriented storage.

The benefit of row-orientation lies in operations such as adding new tuples to a
table and look-ups of a set of attributes of a single tuple or a small number of tuples.
Adding an entire tuple in a row store entails an address look-up for the location
to store the record and a sequential write of the record data. In a column store an
address look-up and a write is needed for each attribute value of the record [89].
The behavior is similar during a look-up of a set of attributes from a tuple or from
a small number of tuples. The set of requested attributes for each tuple has to be
reconstructed from the separately stored columns in a column store, whereas they
can simply be read sequentially in a row store. Column stores benefit operations
that access only a subset of columns from a wide table over a large set of tuples [1].
Examples of such behavior are summary operations such as displaying the number
of purchases per month, product category and city for the first quarter of 2011,
which are typical for analytical applications. In this operation, only the columns
actually needed have to be transmitted to the CPU for processing in a column
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store [2]. In the row store, data from columns that are not needed is read if the
requested attributes are not stored consecutively in the record. Reading data in
chunks the size of the CPU cache lines that are usually larger than single attribute
values causes this.

Column stores are advantageous in scenarios where the schema has to adapt to
changing requirements, that is, adding a new column to an exiting table or changing
a column, for example to fit larger values. Columns can be added to a table or
existing columns can be changed, for example increasing the length of a text field,
without having to touch data in the other columns. In contrast, increasing the size
of an existing column or inserting a new column in a row store requires rearranging
the storage of the entire table to adapt to the changed record.

Compression is another aspect where column stores prevail over row stores. The
values in a column are of the same data type, which is beneficial for compression.
Additionally, Krueger et al. [124] have shown in their analyses of enterprise systems
that frequent occurrences of the same value are common for the majority of columns
in a table. As a result, a better compression ratio in column stores is possible [1].
This facilitates (a) better utilization of bandwidth constraints when transporting data
to the processor if results can be computed on compressed data or data is decom-
pressed as late as possible and (b) higher utilization of storage space, which is espe-
cially relevant for IMDBs as memory space is still more expensive than disk space.

Until recently, the vast majority of commercial databases used for transaction
processing as well as analytical processing followed the row-oriented storage model.
By now, column stores and hybrid engines that offer column and row-oriented table
layouts have taken hold in the OLAP domain (cf. Feinberg and Beyer [59]).

2.3 Summary

In this chapter, the basic concepts underlying transactional and analytical processing
from the data model and database design perspectives were provided. Several
data models to support transaction processing were highlighted. Experiences from
different data models have led to the development of the relational model and
relational databases with it, which are today’s most prevalent model in enterprise
data management for transactional as well as analytical purposes. According
to Lindsay, “their [relational databases] adoption in business, government, and
education has enabled the progress we’ve made in productivity and without these
tools to manage the complex affairs of government, business, education, and
science our progress would be really much slower.” [223] As has been discussed
in this chapter, relational databases are the dominant choice for OLTP as well as
OLAP. Thus, the remainder of this work focuses on relational databases as the
foundation for OLTP and OLAP. Relational database design variants and optimiza-
tion strategies commonly applied in OLTP and OLAP have been presented and
discussed.



Chapter 3
Benchmarks for Transaction and Analytical
Processing Systems

As presented in Chap. 1, the goal of this thesis is to analyze and compare the
behavior of databases in mixed workload scenarios as a basis to evaluate logical
database design decisions. Benchmarks provide a method for this. A benchmark is
“a standardized problem or test that serves as a basis for evaluation or comparison
(as of computer system performance).” [141]

This chapter provides related work concerning the creation of a mixed OLTP
and OLAP benchmark. It gives an overview of existing benchmarks in the area
of databases and discusses their applicability in the context of this work and the
simulation of mixed workloads.

Section 3.1 discusses the workload characteristics along which transactional
and analytical processing workloads have been differentiated from each other. The
borders of this classification are blurring because of the continuous adaption of
business operations to stay in competition or keep a competitive advantage. As an
example, the time elapsed between data being entered into a system and needed for
analytical purposes is decreasing, while the amount of data processed is constantly
increasing. Transaction and analytical processing systems are required to keep pace
and are thus continuously improved. With the change of the domains they are
designed to model, benchmarks have to be adapted as well.

Section 3.2 starts with a classification of benchmarking activities in computer
science and continues with the focus on database benchmarking for the areas of
transaction processing and analytical processing. Recent developments in hybrid
benchmarks for OLTP and OLAP are discussed afterwards. In Sect. 3.3, key criteria
that are the basis to create valuable benchmarks are presented and discussed in
relation to the established benchmarks. This chapter closes with an overview of
measures used in benchmarks to compare database systems.

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9 3,

45

© Springer-Verlag Berlin Heidelberg 2014



46 3 Benchmarks for Transaction and Analytical Processing Systems

3.1 Transaction Processing Versus Analytical Processing

Modeling and optimizing a database depends solely on the workload the database
is servicing. Transaction and analytical processing workloads have been serviced
by the same system until the early 1990s. When both processing workloads became
more sophisticated and started to conflict each other’s operation, applications were
classified into operational and analytical [61] and separate systems started to
evolve specializing in either workload. Transaction and analytical processing and
the systems servicing them have diverged largely, but recent developments bring
forth efforts that again focus on both workloads in the same system. In the following,
the characteristics of applications of both workloads will be described. What spurred
the development of reuniting them and its implications will be discussed.

3.1.1 OLTP and OLAP Workload Characteristics

Business applications are distinguished by their workload into operational and
analytical applications. The type of workload is seen as the key consideration in
tuning a database system [58]. Therefore, many efforts have been undertaken to
classify operational and analytical workloads along comprehensible attributes.

French [61] starts a high-level comparison of operational and analytical
workloads by differentiating from an application usage perspective: Operational
applications tend to be static over a long period of time (several years) once
they are programmed and configured if legal requirements do not change. Thus,
database access is determined by pre-defined queries that are embedded in the
program code and are parameterized according to the business case. Analyzing
sales order processing as a typical operational application indicates that the
structure of operational queries is simple. Selects from the database only contain
select-from-where clauses. Insert queries are composed of selecting information of
one or a small number of specific products that are ordered and the actual insertion
of new tuples that make up a sales order into the database. Operational queries are
highly selective. A closer look at current database workloads shows that more than
50 % of all database operations are lookups [125], which indicates that only a very
small number of tuples is needed from a table, for example, the specific products
ordered, the address of the customer currently ordering. Due to their pinpoint access
behavior, operational queries are very short concerning their run time. Since new
data is constantly added to the database (new sales orders, incoming payments,
recordings of outgoing deliveries), the operational workload is characterized by a
mixed read-write access. Furthermore, operational applications require up-to-date
data, for example, to determine if an ordered product is in stock to make a promise.

Analytical processing, according to French [61], is characterized by ad-hoc
queries. Standard reports that are based on pre-defined queries, for example, period-
end reporting, can entail further inquiries if results deviate from expectations.
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These inquiries are often unforeseen and new queries have to be answered by
the system. The queries in analytical reporting are complex in comparison to
operational queries, including sub-selects, grouping, aggregation, and ordering
clauses. An example of such a complex query is determining the top 10 % best-
selling products concerning revenue by region and quarter of the last year, ordered
by their share. This query also exemplifies that a larger set of data is accessed than
in operational processing. Here, all sales orders of an entire year are touched in
addition to general data of the top 10 % of all products that have been sold during
that year. Selectivity is comparatively low. Because of additional operations like
grouping and ordering, analytical queries can have longer run times compared to
operational queries. Fresh data is inserted into analytical systems via batch jobs
in time windows where interactive processing load is low and system resources
can be utilized without affecting end users, i.e., at night. In a later work, French
[62] adds other characteristics for the comparison of operational and analytical
workloads. These are the number of concurrent users, which is comparatively high
(1,000 users and more) in operational workloads and one order of magnitude less
for analytical workloads.

Elnaffar et al. [58] propose a more technical set of attributes to distinguish
operational from analytical workloads and use these to automatically classify a
workload. Table 3.1 gives a summary of the distinguishing attributes of operational
and analytical workloads according to French [62] and Elnaffar et al. [58].

The time dimension plays a significant role for analytics, whereas for transaction
processing the current state is most important. Prepared data sets for analytics keep
track of historical developments and changes applied to the data. Keeping track of
changes to data is done in the OLTP environment as well. According to Helland
[91], data in large-scale systems is not updated, but only new data is added or a
new version is created. If data items were only updated without further processing,
information would be lost, which is not a viable outcome in business processing.

3.1.2 Blurring the Border Between OLTP and OLAP

Applications exist that show access patterns typical for one domain, but that demand
data and structures of the other. The border between OLTP and OLAP becomes
increasingly blurred, as reports require more up-to-date data and transactions
process larger sets of data. In the case of OLAP, reports exist that require up-to-date
and detailed data for short term analyses and have a low selectivity. Examples are
reporting on sales of the day at the end of business or monitoring of promotional
activities. OLTP application examples are ATP, dunning runs [167], or payment
runs. ATP has to scan through stock data, plan data, and promised data concerning
a specific product to determine if the desired quantity of a product is deliverable at a
given date. Dunning runs need up-to-date transaction data to determine outstanding
payments and scan through a large set of data, that is, sales, billing, payments, and
previous dunning records. To avoid strain on the OLTP system dunning and payment
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Table 3.1 Operational and analytical workload characteristics (Based on [58, 62])

OLTP OLAP

Queries Selects, inserts, updates

• Share of write access operations is
higher in OLTP than in OLAP

• OLTP requires higher locking
effort, because of many write
operations

Mainly selects

• User interaction consists of selects
• Fresh data from transactional sys-

tems is entered via batch updates

Pre-determined Ad-hoc
Simple statements Complex statements including sorts,

grouping operations, and
aggregations

Short run times Long run times
Freshness of

data
Real-time updates, most current view

on business operations
Varying degrees of freshness,

depending on configuration of
updates (e.g., real-time, daily,
weekly)

Processed
data

Small number of tuples Large numbers of tuples are scanned
and selected, e.g., because of loose
time constraints like overview of
an entire year

High selectivity – OLTP queries have
a high index usage ratio because of
their selective access

Low selectivity

Load Large number of concurrent users
(1,000C) and thus large number of
concurrent transactions, high
requirements on throughput and
timeliness in OLTP

Fewer concurrent users (100C) and a
smaller number of concurrent
queries

runs are executed as batch jobs dissecting the large set of data into subsets of
business partners and processing them in parallel to speed up execution. The
above application examples are processed in either the OLTP or OLAP system by
introducing additional optimized storage or workarounds like the ODS or batch jobs.
The ODS introduces another source of redundant data that needs to be managed
and time windows for batch jobs become shorter in global enterprises calling for
alternatives approaches to deal with these applications of mixed characteristics.
These examples show that an exact border where OLTP ends and OLAP begins
cannot be drawn.

In contrast to the classification and typical characteristics of OLTP and OLAP
workloads given in Sect. 3.1.1, Krueger et al. [124] have found that 90 % of all
queries executed in a commercial enterprise resource planning system, a widely
employed OLTP system, are selects. The foundations of this analysis have been
database log files of 65 companies that employ this particular system. The rationale
behind this is that before each insert an application typically selects data from the
database to create the context of a particular transaction. To create a new customer
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sales order, product and customer data are, for example, selected from the database,
an ATP check is triggered to determine the delivery date, etc., before the actual insert
takes place. Thus, while write throughput has to be optimized in OLTP systems, the
read-only performance is equally important.

IMDBs are widely used in analytical processing. Yet, they were not solely
developed for this purpose and according to Garcia [67], database systems like
SAP HANA [179], IBM solidDB [98], Oracle TimesTen [159], VoltDB [219],
and eXtremeDB [140] are multipurpose in-memory databases that achieve faster
response times for analytical applications, but also have the potential to change
the way enterprises distinguish between operational and analytical data. Sikka
et al. [190] state that the separation of OLTP and OLAP no longer reflects the
state-of-the-art requirements of modern business applications and they demonstrate
that a column store is suitable for high-scale transactional processing.

Research in database technology has also brought forth prototypes concerned
with processing OLTP as well as OLAP workloads in one database system. Röhm
[176] introduced his “unified architecture for OLTP and OLAP” to allow OLAP
clients the access to up-to-date data. He proposes a middleware-based database
cluster with OLTP and OLAP nodes side by side where each OLAP node holds
its own copy of the data with a varying degree of freshness. In contrast to this
middleware-based approach, HyPer [65, 116] handles OLTP and OLAP using a
hardware-assisted replication mechanisms. This achieves consistent and up-to-date
snapshots of the transaction data. Other prototypes such as OctopusDB [55] and
HYRISE [80] aim at avoiding to keep multiple copies of data and instead adapt the
storage layout of the data to the usage patterns in the workload.

3.2 Benchmark Classification

Benchmarks can be classified based on what is being evaluated. They can be divided
into hardware and software benchmarks. Hardware benchmarks can further be
divided into ones that evaluate systems in their entirety, component benchmarks,
and micro-benchmarks. The system benchmarks take the system to be tested
as a black box and measure based on inputs and the outputs as the reaction.
Component benchmarks test isolated but complex parts of a system, e.g., a hard
drive. Micro-benchmarks analyze basic components of a system, for example, the
performance of the floating-point operation of a CPU.

Micro-benchmarks are also found in software benchmarking, for example, to
compare alternative implementations of an algorithm. Further software benchmark
categories are system software benchmarks and application software benchmarks.
Application software benchmarks compare the performance and/or functionality
of applications or application bundles. System software benchmarks provide the
basis for evaluation and comparison of software that services applications and is
not necessarily directly used by an end user. Database benchmarks, which are
the basis for the elaborations and methodologies presented in this thesis, belong
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Table 3.2 Categories for computer system benchmarking

Main category Sub category Description

Hardware Component Assessment of specific parts of a computer system,
i.e. microprocessor, hard disk drive, or graphical
processing unit

System Assessment of a system in its entirety
Micro-benchmark Measure the performance of a very small and

specific piece of hardware
Software Application software Compare performance and functionality of specific

applications or application bundles, e.g. word
processing, mail clients/servers, business
software

System software Compare performance and functionality of software
that services applications, e.g. operating systems,
virtualization software, database systems

Micro-benchmark Measure the performance of a very small and
specific piece of software

to this category. Table 3.2 gives an overview of the mentioned benchmarking
categories for computer systems.

Two major organizations that offer standardized benchmarks in the area of
enterprise applications today are the Transaction Processing Performance Council
(TPC) [213] and the Standard Performance Evaluation Corporation (SPEC) [195].
Both are non-profit organizations that comprise hardware and software vendors
and research organizations as members, who can influence the development of
the benchmarks. SPEC provides hardware as well as software benchmarks, but
none are directly concerned with databases or transaction processing systems.
TPC aims its attention directly at database benchmarks in the area of software
benchmarks. Some vendors develop benchmarks specifically for their products
to evaluate different configurations of the software and hardware to help their
customers making a decision which hardware and software configuration to use
in their specific cases. Examples are the Oracle Applications Benchmark [160] and
SAP Standard Application Benchmarks [178].

3.2.1 Transaction Processing System Benchmarks

During the early development of RDBMS, only a few application-specific bench-
marks existed instead of standard database benchmarks. These were unsuitable
to evaluate the performance of the major components of relational database
systems in general. Furthermore, they were difficult to understand and, thus, not
straightforward to use [52]. From an effort to measure the speedup characteristics
of their own RDBMS, Bitton et al. [11] developed a benchmark that became known
as the Wisconsin Benchmark. This benchmark was the first widely used method
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to compare RDBMS and it changed the market by pointing out weaknesses of
database systems and forcing vendors to significantly improve their products.

The TPC has developed several benchmarks. At the present, the benchmarks
TPC-C [209] and TPC-E [210], targeted at transaction processing systems, are
widely used by database and hardware vendors to compare their products in
that domain. The Telecommunication Application Transaction Processing (TATP)
Benchmark [99] is an open source workload also targeting vendors of RDBMS and
designed for high-throughput applications.

TPC-C

TPC-C was introduced in 1992 and comprises a set of basic operations represen-
tative of complex OLTP applications environments to exercise system functionality
[209]. It includes different transaction types, a more complex database structure.
The simulated business scenario is that of a wholesale supplier company that uses
geographically distributed sales districts and associated warehouses.

The TPC-C database schema consists of 9 tables that contain between 3 and
21 attributes with 92 attributes in total. To evaluate systems according to the
requirements of companies of different sizes, TPC-C scales along throughput, which
is driven by the activity of customers connected to each warehouse. If larger systems
need to be evaluated, more warehouses and their associated customers have to be
configured.

TPC-C provides a mixture of read-only and update-intensive transactions that
range from entering, delivering, and checking the status of orders, simulating
payments, and monitoring warehouse stock levels. All transactions are executed in a
pre-defined mix. Order status, delivery, and stock level each make up at least 4 % of
the workload and the payment transaction at least has a share of 43 %. No such share
exists for the order transaction as the benchmark metric is based on the throughput
of this transaction in addition to the workload created by the other transactions in the
background. Furthermore, the system should achieve specified response time goals.
90 % of all transactions should complete in 5 s or less, except stock level look-up,
which may take up to 20 s.

The benchmark metric for performance comparison is number of orders pro-
cessed per minute (tpmC). The second metric, called $/tpmC, is used for system
cost comparison related to performance based on a 3 year cost of ownership.

TPC-E

TPC-E, released in 2007, is the successor of TPC-C with the goal of providing
an enhanced and more complex schema and workload to better simulate the
characteristics of modern OLTP systems [94]. TPC-C and TPC-E currently coexist.
The reason is that TPC-C is still very popular because of its wide distribution and
long usage. However, the adoption rate of TPC-E is increasing [150].
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TPC-E simulates a brokerage firm and its interactions with customers and
business partners. Two types of transactions are defined that comprise ten business
transactions to simulate these relationships. The schema contains 33 tables with the
widest table having 24 attributes, 21 of these tables contain only 5 attributes or less
and the schema includes 191 attributes overall. The tables are divided into four sets
to describe the customers, brokers, markets, and general data such as locations.

Similar to TPC-C, TPC-E scales along the number of customers for a brokerage
firm. The metrics to compare results are a performance metric, i.e., transactions per
second, called tpsE, also referring to the throughput of a specific transaction and a
price performance metric like in TPC-C.

Telecommunication Application Transaction Processing Benchmark

The goal of the relatively new TATP benchmark is to evaluate database transaction
systems in an extremely high throughput scenario. This benchmark is not a standard
benchmark provided by a council of industry and research partners as is the case
with the TPC benchmarks, but is used by industry and research already.

The workload of this open source benchmark simulates a home location register
database of a mobile carrier. The database consists of 4 tables with the widest table
having 34 attributes and the schema having 51 attributes overall.

With the help of seven transactions, subscribers and their actions are imitated.
In the basic setting, the seven transactions are issued by ten independent clients.
The transaction mixture is the same for all clients and composed of 80 % read
transactions and 20 % write transactions. Read transactions include the retrieval of
subscriber data with a share of 35 %, retrieval of access data (35 %), and getting
the new destination of a subscriber (10 %). The write transactions include location
updates (14 %), subscriber data updates (2 %), call forwarding insertions (2 %), and
call forwarding deletions (2 %).

After a run, TATP yields the mean qualified throughput, that is, the number of
transactions per time unit and response time distributions for all seven transactions.

3.2.2 Analytical Processing System Benchmarks

The TPC provides TPC-H [212] as its standard for testing analytical systems.
TPC-DS [208] as a new benchmark has been proposed to replace TPC-H. The
Star Schema Benchmark (SSB) by O’Neil et al. [156] takes the decision support
benchmark TPC-H a step further in the direction of optimized analytical processing
by deriving a pure star schema from the schema layout of TPC-H. Its goal is to
evaluate the performance of data management systems built for pure data warehouse
environments that require matching database schemas. Like TATP, SSB is not a
standard benchmark.
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TPC-H

Since 1999, TPC-H is in use to assess hardware systems and databases regarding
their decision support capabilities. Similar to the scenario of TPC-C, TPC-H
simulates the activities of a wholesale supplier. The database schema consists of
8 tables with the widest having 16 attributes and 61 attributes in total. TPC-H uses
22 analytical style queries to exercise the database and 2 refresh functions, which
keep the analytical database up-to-date and clean up old data.

The metrics reported in TPC-H are composite query per hour, called
QphH@Size, as the performance metric and TPC-H Price/Performance ($/QphH
@Size) as the price-performance metric. Composite query per hour is computed
from the results of two runs. The first run is the power test where queries are
executed serially in a single session to determine the raw processing power of the
system under test for each query. The second run is the throughput test where
queries are submitted to the system in parallel sessions to examine the throughput
boundaries.

Star Schema Benchmark

To create a pure star schema for the evaluation of star schema data warehouse
queries, the two tables of TPC-H that contain data about the orders (Lineitem and
Order) are denormalized into one fact table. Furthermore, text attributes are dropped
from this new fact table, because in the denormalized form it takes significant
storage space and cannot be used in aggregations. Three more tables are dropped to
create the star schema out of the snowflake schema and to avoid periodic snapshots
that are updated and that invalidate historical data. Thus, the SSB database schema
comprises 1 fact table and 4 dimension tables with 58 attributes in total and the
widest table having 17 attributes.

The SSB queries are based on some of the TPC-H queries, however many of
those queries cannot be translated to the adapted database schema. The SSB queries
are assigned to four groups, called query flights. Each query flight answers a specific
business question and includes three to four statements with increasing selectivity.
The performance metrics reported are the elapsed time for the query flights, CPU
time, and storage consumption broken down for the different structures (tables,
indexes, views).

TPC-DS

The rationale behind the work on TPC-DS (Decision Support) was to create a
benchmark that is considerably more realistic than earlier benchmarks for analytical
processing systems [170]. It provides a star schema with multiple fact tables
and shared dimensions. The generated data is skewed and scales sub-linearly for
non-fact tables. It provides a wealth of analytical queries of different complexity
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classes to simulate a diverse workload including ad-hoc queries. TPC-DS has been
released in January 2012 as the new decision support benchmark standard.

The business environment modeled in TPC-DS is that of a retail product supplier
including customer, order, and product data. Its database schema consists of 7 fact
tables and 17 dimension tables that are shared among the fact tables. The widest
table contains 34 attributes and the database schema accounts for 425 attributes
distributed across 24 tables.

Similar to TPC-H, TPC-DS includes user queries to simulate analytics and
data maintenance operations to simulate updating the data warehouse from the
operational sources. The user queries comprise 99 queries of 4 categories, which
are reporting, ad hoc, iterative OLAP, and data mining queries [208]:

• Reporting includes queries that run periodically to answer well-known and
predefined business questions.

• Ad-hoc queries are similar to reporting queries. The nature of ad-hoc queries
in the real world is that they are not known beforehand and, thus, database
optimizations are not possible because of this lack of knowledge. To simulate
the lack of knowledge any optimizations that are specific to the ad-hoc queries in
the benchmark are forbidden.

• Iterative OLAP queries include sequences of simple and complex statements
that lead from one to the next. The statements contained in iterative queries are
handled as ad-hoc queries and the database must not be optimized for them.

• Data mining queries analyze large sets of data, contain joins and aggregations
and produce large result sets.

The metrics to report results are, like in TPC-H, query throughput (queries per
hour at a specific scaling factor – QphDS@SF) as the performance metric and the
price-performance metric ($/QphDS@SF). The scaling factor is a number by which
the initial database sizes are multiplied to create a larger data set.

Although first ideas about TPC-DS have already been published in 2002 [170],
it took 10 years until its announcement as the new decision support benchmark
standard in January 2012 by the TPC.

3.2.3 Mixed Workload Benchmarking

In the database benchmark area, as can be seen above through the assignment of
benchmarks to the OLTP or OLAP domain, benchmarks are further divided into
domain-specific benchmarks. Gray [74, Chap. 1] stated that benchmarks needed
to be domain-specific because application workloads are too diverse to optimize
a system for all domains at once. However, the separation of OLTP and OLAP into
two domains is subject to reevaluation, as motivated in Chap. 1.

Workload of a resource can be defined as the amount of work and the types of
requests that are assigned to the resource in a given period. Concerning OLTP and
OLAP, this can be broken down to the types of queries that take place and their
frequency of execution in the database.
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A mixed workload in this thesis is defined as the total workload composed of
diverse sub-workloads. The diverse sub-workloads in this case are an OLTP and an
OLAP workload. In a mixed workload of OLTP and OLAP, the two contribute to the
total workload and the share of each sub-workload has to be defined. As currently no
productive system exists that is subject to a mixed workload, only the sub-workloads
can be defined realistically, e.g., by using traces from real systems.

Existing Mixed Workloads Related to OLTP and OLAP

Mixed workload has been a subject in benchmarking as well as in productive
systems even after the separation of OLTP and OLAP into two domains. TPCs
transactional web e-Commerce benchmark TPC-W [207], which has been marked
as obsolete since 2005, but is still in use, explicitly models different workloads of
its basic queries to reproduce diverse user behavior. TPC-W models an Internet
commerce environment and simulates the queries encountered in a web shop. Three
profiles are provided that vary the ratio between browsing and ordering products,
that is, between read-mostly access and write-intensive access. The given profiles
are named browsing, shopping, and ordering. In browsing 95 % of the queries
are read-only (browsing) and 5 % cover ordering activities. The shopping mix is
comprised of 80 % browsing and 20 % ordering, while the ordering mix contains
equal shares of ordering and browsing activities. Similar to the mix of OLTP and
OLAP queries these mixes cover conflicting optimization goals, e.g. fast access of a
large amount of data during browsing versus providing fast insertion of data during
ordering.

Like in the example of TPC-W, the contribution of the OLTP and OLAP
sub-workloads to the total workload should not be constant in a mixed OLTP and
OLAP benchmark as is the case with queries contributing to the workloads of the
current benchmarks. This is the case because transactional and analytical processing
systems follow conflicting optimization goals and consequently the share of OLTP
and OLAP-style queries has an impact on the decisions to optimize a combined
system.

The development of ODSs shows how a mixed workload of simplified OLTP
and OLAP operations is handled by productive systems. As described in Sect. 2.1.2
there are four classes of ODS, with three of them being copies of transactional
data that can be categorized according to data freshness and the fourth type of
ODS additionally including strategic information created by a report in the data
warehouse and copying the results to the ODS. On top of the ODS different types
of users produce a mixed workload. Inmon characterizes the users as “farmers” and
“explorers” [103]. Whereas farmers perform the same task repeatedly and exactly
know what they are looking for, explorers exhibit unpredictable behavior. They skim
through a large data set to search for patterns and relationships similar to OLAP
workloads.

The reason why these diverse loads could be integrated within the ODS as one
system is that farmers and explorers operate on only a limited amount of data copied
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into the ODS to produce reports. They are concerned with only a short period of
time, e.g. total sales of the day or the number of new customers. The focus of
composite OLTP and OLAP systems, however, lies on systems that contain the
entire operational data set of a company for transactional processing and analytics
and not just a snapshot.

A Hybrid OLTP and OLAP Benchmark

Latest activities in benchmarking include the creation of benchmarks for composite
OLTP and OLAP systems to assess their performance. Funke et al. [66] have
recognized the lack of a hybrid benchmark and introduced TPC-CH in March
2011. It is a combination of the standard benchmarks TPC-C and TPC-H. TPC-CH
includes the complete database schema and queries of TPC-C without modifications
and adds the Nation, Region and Supplier tables from TPC-H to accommodate
all of the TPC-H queries. The TPC-H queries have been adapted to fit the new
schema without changing their semantics from the business point of view. As a
result, TPC-H consists of 22 OLAP queries and 5 transactions, 12 tables with 106
attributes in sum. According to the authors [66], TPC-CH results are comparable
with those of TPC-C. TPC-CH has been renamed to CH-benCHmark in subsequent
works [45, 64].

Table 3.3 gives an overview of the previously described benchmarks, their
database schema, data set, queries, domains, and their year of introduction for
non-standard benchmarks respectively the year of standardization for the standard
benchmarks. In comparison with each other, the complexity regarding the number
of tables, table width and number of queries varies enormously. However, no
conclusion should be drawn from this alone, as depending on the area of application
a more or less complex benchmark may be desirable.

3.2.4 Other Database Benchmarks

Benchmarks exist that work with the productive systems directly and thus incorpo-
rate realistic workloads, for example, the SAP Standard Application Benchmarks.
These analyze the entire database and application stack and they are not focused on
direct and independent assessment of the database management system. Nonethe-
less, they present a basis to extract close to reality table structures and workloads
for a composite benchmark.

Other database systems exist that augment or compete with relational databases,
but relational databases continue to dominate what most people think of as a
database system [131]. Examples are object databases, document databases, graph
databases, or spatial network databases (cf. [131] for a detailed description of
these databases). Along with the development of these databases, benchmarks
have been established, e.g., the OO1 [25], OO7 [23], and the HyperModel [5]
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Table 3.3 Overview of existing benchmarks

CH-
TPC-C TPC-E TATP TPC-H TPC-DS SSB benCHm.

Domain OLTP OLTP OLTP OLAP OLAP OLAP Mixed
OLTP &
OLAP

Standard Yes Yes No Yes Yes No No
Scenario Wholesale

supplier
Broker-

age
firm

Mobile
carrier

Wholesale
supplier

Retail
product
supplier

See
TPC-H

Wholesale
supplier

Schema 3NF 3NF 3NF 3NF Star schema Star
schema

3NF

#Tables 9 33 4 8 24 5 12
Widest

table
21 24 34 15 34 17 21

Narrowest
table

3 2 5 3 3 7 3

#Columns 92 191 51 61 425 58 106
#Tables

updated
8 20 3 2 16 1 8

Data
generation

Non-
uniform

Uniform Uniform Uniform Skewed Uniform Non-
uniform

Data set Synthetic Pseudo-
real

Synthetic Synthetic Mostly
realistic

Synthetic Synthetic

#Queries 5 12 7 22 99 13 27
Year 1992 2007 2004 1999 2012 2007 2011

benchmarks as de facto standards for object databases [49], or are being established
like in the case of graph databases [56]. Benchmarks for other database types than
relational databases are not further discussed in the context of this thesis as the focus
lies on enterprise data management. In this area, relational databases are prevalent.

Other work streams are present in connection to relational databases where
existing benchmarks or self-made micro-benchmarks are applied to determine if
and how the implementation of database components has to be changed to exploit
technological advances. For instance according to Petrov et al. [164], flash solid
state disks (SSDs) are a disruptive technology that has the potential of changing
the established principles in database system architecture. In recent work, they
evaluated the sizing of database pages [165] and the performance of database
query processing algorithms [8] against the background of using SSDs as primary
database storage. Instead of using the aged TPC-C benchmark or self-made micro-
benchmarks, the benchmark proposed as part of this thesis provides a complex
business processing workload that can serve as a basis for further analyses in these
directions.

ETL as the process to synchronize fresh data from the operational system to
the analytical system is part of the OLAP landscape. Proposals of benchmarks
and implementations have arisen, e.g., the so-called “data intensive integration
process benchmark” for evaluating the performance of integration systems [20]
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or the RODIN High Performance Extract/Transform/Load Benchmark [44] that
mainly measures load performance, but no industry standard benchmarks exist.
The need has been acknowledged [215] and the TPC formed a working group to
assess the purpose and scope of an ETL benchmark [224]. ETL benchmarks will
not be discussed further in this thesis since the traditional ETL process as such is
not required in a hybrid OLTP and OLAP system and data integration from several
sources for analytics is beyond the scope of this thesis.

According to Cecchet et al. [26], database performance evaluation is about more
than peak throughput. The necessity arises to assess performance in the presence of
failures, in degraded modes of operation, or under low loads. Benchmarks need
a notion of the difference of peak workloads and regular workloads as systems
react to failures very differently when resources are fully utilized. Since operational
database systems do not usually run under high loads all the time, existing
benchmark workloads are not applicable for testing failure behavior. A benchmark
that goes beyond measuring peak performance throughput has been introduced by
Vieira and Madeira [216]. The so-called DBench-OLTP is an OLTP benchmark
and it is based on TPC-C. It focuses on measuring performance and availability
in the presence of failures by inducing faults that are based on typical administrator
mistakes. Furthermore, Vieira and Madeira [217] provide a comprehensive overview
of research activities and working groups in the area of dependability benchmarking.
For this thesis, the simulation and handling of failures is an orthogonal dimension
and not in scope.

3.3 Key Criteria for the Value of Benchmarks

In his benchmark handbook, Gray [74, Chap. 1] introduces four criteria that make a
domain-specific benchmark useful. These are:

• Relevancy – Comprises measuring the performance of systems with the help of
typical operations that a system in a specific domain is exposed to.

• Portability – It means that the benchmark should be easy to implement on a
variety of different systems and architectures.

• Scalability – To measure evolving systems and different system sizes a bench-
mark has to be scalable.

• Simplicity – A benchmark has to be easily understandable.

Newer work revisited this question of what the overall requirements for bench-
marks are. Huppler [96] lists the following five key aspects and expresses that not
all of the criteria have to be fulfilled in perfection, but most successful benchmarks
are strong in one or two of these aspects.

• Relevancy – The results should reflect important issues of the domain.
• Repeatability – The benchmark should be able to run multiple times yielding

the same result.
• Fairness – All compared systems are able to participate equally.
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• Verifiability – The result of the benchmark is perceived as real.
• Economic – The benchmark run should be affordable.

Compared to Gray’s initial criteria, being economic and repeatable are new
aspects. Fairness can be interpreted to cover scalability and portability. Verifiability
can be seen as a further specification of simplicity: Focusing on the results of the
benchmark and for them to be perceived as real, the scenario of the benchmark has
to be understandable (see simplicity) and relevant for the domain.

Sachs et al. [177] and Vieira et al. [218] summarize based on these criteria that
to be useful and reliable a benchmark must fulfill the following criteria: It must be
based on a workload that is representative of real-world applications. It has to stress
all key aspects of the target platform. To be fair it must not be tuned or optimized for
specific database products. Its results have to be reproducible and its scalability must
not be limited. Stonebraker [197] argues that to create a benchmark (1) a pressing
need and (2) a simple application should be found and that (3) the focus should be
on the vendor community to provide better systems.

3.3.1 Established Benchmarks and the Benchmark Properties

As companies continuously adapt to stay ahead of competition, their workloads
are adjusting as well. If benchmarks drop behind these developments, they lose
relevance [94]. An issue of existing benchmarks is that they do not represent
the complexity of the actual database schemas used in today’s systems recording
daily operations, but an ideal version: According to Nambiar and Poess [148], real
database schemas comprise a considerably larger number of tables and attributes.
As was previously shown in Table 3.3 the tables in the existing benchmarks are
relatively small compared to what Krueger et al. [124] observe in their study
of enterprise system databases. They make note of database tables having 100
attributes and more. Even if data is sparsely distributed over such a large amount
of attributes and 75 % of all attributes have a small number of distinct values,
depending on the database architecture the mere existence of a column in a
table – filled or not – can influence query performance.

Hsu et al. [95] argue that workloads in production exhibit a wider range of
behavior than is reflected by the TPC benchmarks. Later, a report by Forrester
Research further emphasized this line of argumentation with the statement that
“TPC benchmarks no longer reflect the complex workloads of today’s real-world
deployments.” [226] Although they still exercise critical database functionality, their
simple table structure and the aforementioned objection against the realism of the
simulated workload are exclusion criteria that oppose the usage of TPC benchmarks
as the basis for creating a new method for the evaluation of mixed workload systems.

The hybrid CH-benCHmark, described in Sect. 3.2.3 as an approach to bench-
mark mixed OLTP and OLAP systems, uses the TPC-C tables with two additional
tables from TPC-H and thus shares their weakness of relying on the comparatively
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narrow tables provided by these benchmarks. Furthermore, both benchmarks are
relatively old: TPC-C was first introduced in 1992, TPC-H in 1999. The age of
a benchmark in itself is not a negative criterion if the benchmark is continuously
adapted. In the almost two decades between the introduction of TPC-C, applications
and their characteristics have changed. This observation led to the introduction of
TPC-E as a new OLTP benchmark and supposed successor of TPC-C. Yet, despite
the fact of TPC-C’s aging database schema and workload, it is still widely used for
database system and hardware evaluation and comparison.

Regarding the economy criterion, Poess and Floyd [169] state that the cost
in resources to produce a benchmark can easily become substantial, making it
a difficult or even impossible undertaking for a small company. This statement
refers to the TPC-W and TPC-C benchmarks, but the other benchmarks are no less
complex. The member companies of the TPC belong to the largest database and
hardware vendors in the industry. According to DeWitt [222], benchmark results
for specific database products are usually produced by the vendor and/or hardware
partner producing a performance result that is guaranteed to not be exceeded by
the actual system implemented at a user’s site. Another issue is the narrow-minded
focus of vendors on optimizing their products for particular benchmarks while there
are database product vendor’s restrictions on third parties to publish own benchmark
results [222].

3.3.2 Benchmark Measures

An important aspect constituting to the value of benchmark results are the measures
that are actually reported from a benchmark. The main measure in existing
benchmarks, as can be seen from Sect. 3.2, is the maximum throughput at which a
certain percentile of transactions does not exceed a given maximum response time.
In addition, the cost of the system hardware and maintenance for a certain period is
specified in a second measure based on the throughput measure. These metrics are
generally accepted and used in today’s standard benchmarks.

According to Thomasian [205], more detailed measures are needed to compare
database systems, because the key performance measures in relational database
benchmarks only reflect the ability of the benchmarking team to tune the system,
the speed of hardware, and the efficiency of the software. Yet, they are missing
lower level parameters such as page references or buffer hit ratio, to break down the
performance according to database components. In early work, Bitton and Turbyfill
[10] went into a similar direction proposing more fine-grained measures to compare
database systems regarding processing times and system utilization and using them
in the Wisconsin benchmark [11]. The measures are classified into speed indices
and utilization indices. Speed indices, according to Bitton and Turbyfill include:

• Response time of queries
• Response time of queries as a function of the workload
• Throughput of the system as a function of the workload
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The second class, utilization indices, includes measures such as CPU utilization
and communication line utilization. The distinction between the two classes of
measures is that the speed indices provide an absolute measure of the performance
of database systems and utilization indices provide a basis to understand where the
bottlenecks are. The proposal was that these indices should be evaluated against
a range of well-defined workloads with workload of a database system being a
function of available indexes, the size of the produced output, and the ratio of read-
only and update queries.

In today’s benchmarks, however, only a single workload is tested and the system
is tuned to maximum performance. In contrast to the just-mentioned fine-grained
metrics, only high-level measures are reported for comparison, which are the
throughput and price-performance metrics.

Energy prices continue to escalate, but energy efficiency presents an often-
untapped opportunity to increase profits. In data centers, for example, the life-cycle
energy costs exceed the costs of purchasing the equipment [144]. The SPEC
and TPC benchmark organizations have reacted and another measure has been
added reporting on energy consumption in relation to performance. SPEC’s energy
benchmark “SPECpower ssj2008” [193] is the first industry-standard benchmark to
measure power and performance characteristics of server-class compute equipment.
It provides an overview of a server system’s energy efficiency based on simulating
Java server applications. SPEC also introduced the Server Efficiency Rating Tool
(SERT) for the evaluation of overall energy efficiency not focusing on capabilities
of computer servers in specific application areas or business models like bench-
marks [194]. The TPC introduced the TPC-Energy specification [211] based on
SPECpower. It is applicable to all its current benchmarks and provides a measure
composed of the consumed energy in relation to the throughput and time needed.
The TPC energy specification is a supplement to the existing TPC benchmarks to
report the extra measure.

3.4 Summary

The characterization of OLTP and OLAP workloads at the start of this chapter
leads to the insight that the border that separates the two workloads is increasingly
blurring. Many applications already exist that comprise characteristics of both work-
loads according to the previous characterization. These suffer from the separation
of both domains and workarounds are undertaken to enhance their execution, for
example, pre-computing data, or execution in batch mode during low system load
times to reduce their impact on the rest of the system. Based on the assumption that
the trends of real-time, mass data processing, on-the-fly computation and ad-hoc
reporting will not break off, the number of applications not cleanly fitting into
either domain will only increase in the future. This calls for a change in enterprise
data management and its traditional segmentation of transactional and analytical
processing systems.
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In this chapter, existing benchmarks in the area of transaction and analytical pro-
cessing were reviewed. Standardized benchmarks, ad-hoc standards, and research
benchmarks exist for both application domains. The separation of the two domains
has led to the fact that the focus of the existing benchmarks lies on either OLTP or
OLAP.

With the CH-benCHmark, a research initiative started investigating hybrid OLTP
and OLAP benchmarks for the evaluation of the new database systems in March
2011. This new benchmark is based on the existing TPC-C and TPC-H benchmarks.
A benchmark has to adhere to a set of criteria to be of use. It has to be relevant,
repeatable, fair, verifiable, and economical. Companies adapt to market situations
to remain competitive resulting in changes to their workload. If benchmarks are not
adapted according to these changes, their relevancy diminishes. Several researchers
have already expressed their concern that existing benchmarks are too simple or do
not reflect the current enterprise workloads any longer. Against this background, a
new hybrid OLTP and OLAP benchmark developed based on existing benchmarks
manifests the same weakness if the changing character of enterprise workloads
is neglected.



Part II
Towards a Benchmark for Mixed

Workloads and Its Application
in Evaluating Database Schemas



Chapter 4
Combined Transaction Processing
and Reporting Benchmark

Only limited statements can be made concerning the ability of existing data
management systems to handle a mixed OLTP and OLAP workload since they
have so far been treated as separate domains and separate benchmarks were created.
Existing benchmarks could be applied to a combined architecture for OLTP and
OLAP by simply running the benchmarks in parallel. This would only lead to a
partial picture of the actual performance of such a system measuring the effects
of hardware resource contention as the benchmarks are running on their own
distinguished sets of tables. Furthermore, conflicts and opportunities arising from
data access of the different operations on the same tables are of particular interest
in mixed workload situations. The load on the system obviously increases in
a mixed workload scenario compared to two single workload systems. Yet, the
data accessed in OLTP and OLAP operations is the same business data just in
differently optimized structures. Thus, operations accessing this same data in a
common structure can benefit from each other, for example, through multi-query
optimization [183], simultaneous pipelining [88], or cooperative scans [126, 228].
Usage of such strategies does not improve performance unrestrictedly and models
have to be created to find an optimum like proposed by Johnson et al. [113]. Similar
to the creation of new hybrid systems, a relevant and representative workload to
test, adapt, and tune new strategies and models is needed here as well. A hybrid
benchmark based on observations from current enterprise systems can provide such
a workload.

In this chapter, such a benchmark to analyze and compare the performance of
systems under mixed workload situations is introduced. Section 4.1 presents the
steps taken to create the hybrid benchmark. According to the first step, Sect. 4.2
starts with a discussion on relevant scenarios for OLTP as well as OLAP in
the enterprise context and choosing the order-to-cash process as the underlying
scenario of the benchmark. The order-to-cash process will be examined in further
detail in this section and the underlying data model is provided and explained.
In addition to the data, a benchmark needs a representative set of queries to exercise
the database. These are presented in Sect. 4.3. Afterwards, details are provided on
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how the benchmark can be adapted to analyze different system sizes and workloads.
Section 4.5 relates the newly introduced benchmark to the benchmark criteria of
creating a valuable benchmark according to the discussion in Sect. 3.3.

4.1 Creation of a Hybrid Benchmark

Three alternative ways to create a mixed OLTP and OLAP workload benchmark
come to mind: (1) the combination of two existing benchmarks like the approach
taken in the CH-benCHmark (see Sect. 3.2.3), (2) the extension of an existing
benchmark with the respective other workload, and (3) the creation of a completely
new benchmark.

Regarding the first approach, the underlying data schemas of the different
benchmarks differ and, thus, would need to be integrated to create a data schema for
both workloads. As shown in the CH-benCHmark efforts this approach is feasible.
However, as was discussed in Sect. 3.3, the tables of the used standard benchmarks
are relatively simple compared to the tables in real enterprise systems. Workloads in
enterprises adapted to market situations and thus evolve and change. If benchmarks
are not adapted accordingly, they lose relevancy because they do not reflect the real
workloads any longer. This has to be born in mind when relating benchmark results
to real world systems. The question how relevant a new benchmark, which is based
on aged database schemas and workloads, is remains. The same arguments apply
to the second approach. Based on the observation that established benchmarks have
aged and do not reflect current enterprise workloads any longer, the third alternative
is chosen to create the benchmark proposed in this chapter.

Figure 4.1 provides an overview of the steps that followed the initial decision to
create an entirely new benchmark. The steps taken to develop the new benchmark
are based on the requirement to comply with the previously discussed benchmark
criteria (Sect. 3.3).

The simplicity criterion is covered by implementing a scenario that is easily
understandable as it is part of every-day life. At the same time, this scenario has
to fulfill the relevancy criterion, i.e., it has to provide enough complexity to model
realistic workloads as observed in today’s enterprise systems.

As the next step once the scenario is fixed for the benchmark, the database
schema underlying the chosen scenario needs to be defined. To achieve a realistic
setting, the database schema is extracted from a real OLTP enterprise system that is
widely used. For this database schema, a pseudo-realistic data set is created based on
the workload of a model company and analyses of data distributions within several
companies.

SQL traces conducted in real OLTP systems and their adaptation to the chosen
scenario lead to the definition of the OLTP workload part of the new hybrid
benchmark. The OLTP queries are extracted including their inter-transaction
dependencies. For example, an invoice can usually only be sent to the customer if
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all ordered items have been delivered. Therefore, the queries recording the delivery
of all the line items that will be invoiced have to be executed before the transaction
creating the invoice is executed in the system.

In the same way, the reporting queries relevant in the order-to-cash process are
extracted from the data warehouse and the ODS, which is a part of the OLAP
system of the enterprise. Queries from the ODS are extracted to include the so-called
operational reporting queries, which in contrast to the analytical summary queries
need data on a very detailed level, most suitably line item level. These queries are
using similar structures as the OLTP system. As a result, only little adjustment in
query design is needed to create the operational reporting queries on top of the
extracted OLTP database schema. The analytical summary queries are defined based
on interviews with managers, who are responsible for strategic decision-making.

The benchmark measures are specified in accordance with the established
benchmarks. Finally, data set size, load, and workload mix are defined as the
variable parameters of the new benchmark that can be used to adapt the benchmark
to the requirements of a specific company or test scenario. As a result, the Composite
Benchmark for Transactions and Reporting (CBTR) introduced in this thesis closely
resembles a real-world scenario using pseudo-realistic enterprise data.

4.2 The Benchmark Scenario

A large variety of scenarios exists in the enterprise world that can be the basis
for a new benchmark. Existing benchmarks relied on scenarios that are part of
everyday life, such as order processing and stock trading, and as a result are
easily comprehensible as proposed in Gray’s benchmark criteria (cf. Sect. 3.3) to
gain wide acceptance and credibility. From the variety of application areas within
the enterprise world, e.g., marketing, sales, distribution, or accounting, one needs
to be chosen for a benchmark scenario according to this simplicity requirement.
Figure 4.2 gives an overview of the application areas for transactional enterprise
systems. From left to right, the systems are depicted according to their place in
the value chain. Some application areas, such as finance, accounting, or ware-
housing are spanning across other transactional systems with business processes



68 4 Combined Transaction Processing and Reporting Benchmark

Finance
Accounting

Human Capital Management
Asset Management

Research, 
Product 

and 
Process 
Develop-

ment

Marketing 
and Sales

Procure-
ment Production

Shipping 
and 

Distribution Customer 
Service

Inventory Management

Added Value / Order Processing

Fig. 4.2 Application areas in transactional systems (Based on [142, Chap. 1])

transcending the borders of application areas. Typical application areas used in
existing benchmarks are sales and inventory management.

In a company, the process cycles order-to-cash, purchase-to-pay, and order-
to-distribution can be differentiated [166]. Order-to-cash focuses on selling a
companies products and purchase-to-pay deals with obtaining all materials or
products needed to keep the company running, e.g., purchasing raw material
for production or furniture and office material. The first manages revenues and
the second manages the expenses. Order-to-distribution is concerned with the
management of the supply chain, which includes all activities involved in delivering
a product to a customer starting from the raw material [134].

Order-to-cash and purchase-to-pay include parts of financial accounting. Finan-
cial accounting collects all financial transactions of a company to retain an overview
of operations and to create the financial reports needed, e.g., year-end closing
reports. Therefore, the actions in order-to-cash and purchase-to-pay also find their
representation in accounting. Both processes, order-to-cash as well as purchase-to-
pay, including financial accounting provide a good basis for modeling represen-
tative queries from the OLTP as well as the OLAP domain. Order-to-distribution
comprises sourcing, manufacturing, inventory, and distribution activities and is
a core part of business operations. Strategic planning of future revenues and
the order-to-cash process it is based on is the main lever companies use to
encourage their business. The operations within the order-to-cash and purchase-
to-pay processes are similar, but targeted in opposite directions. Consequently, one
of the two scenarios is sufficient for usage within a new benchmark.

For the proposed benchmark, the order-to-cash process and the related part of
accounting are used as the basis. This scenario is important for daily operations, e.g.,
incoming orders, outgoing invoices, incoming payments, and finding late payments
to trigger dunning. It is equally important for reporting, e.g., analyzing the levels
of order fulfillment, determining all open orders of customers to ensure timely
deliveries, or calculating the average processing time of an order for validating the
own service levels and keeping customer satisfaction at a high level. Furthermore,
it is easily comprehensible since the process of sales, invoicing, and payment is
omnipresent in everyday life.
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4.2.1 The Order-to-Cash Process

From the transactional processing side, the process underneath the order-to-cash
process consists of several steps. Figure 4.3 gives an overview of the simplified
order-to-cash process in Business Process Modeling Notation [154]. Multiple actors
take part in the process with the main actors being the customer ordering products
and the company selling the products and processing the order. In the first step the
customer announces his desire to order products of the company, thus a sales order is
created. In this sales order the ordered items, their quantity and further information
such as delivery date and shipping address of the customer are specified.

The second step contains the creation of the delivery documents for the ordered
items and delivering them once the delivery date is reached. After the delivery, or
in most cases at the point of delivery, the items will be billed and billing documents
are created accordingly, which is the third step. In the last step, either incoming
payments are recorded in time of the given payment period and the respective open
items are cleared, or the time allowed for payment is up and a dunning letter will be
sent. Dunning letters can be created several times, each time increasing the dunning
level according to the overdue time and previous dunning actions. The process of an
order ends when the payment is received.

From the analytical point of view, various questions are of strategic interest
in this scenario. These contain analyses of the success of sales such as the com-
parisons of products in different categories, sales districts, and periods, or the
sales performance of teams and individual sales people. Sales analysis provides
the basis for forecasting of future sales based on what customers wanted in
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the past. Another aspect includes process optimization and customer satisfaction
questions, for example, end-to-end order processing time, order completion, that is,
the percentage of orders completed in time, and reducing the average amount of
accounts receivable by analyzing and speeding up cash collection. In the following,
the conceptual data model containing the most important entities that take part
in the order-to-cash process is introduced.

4.2.2 Conceptual Data Model and Database Schema

The entities taking part in the order-to-cash process can be classified according to
the process step they are primarily taking part in. The process steps are (a) ordering,
(b) delivery, (c) billing, and (d) accounting. Figure 4.4 gives an overview of the
entities within this scenario.

Master data, which is depicted in gray shading includes data about the products
offered, sales organizations as administrative units of the company that offer
products, for example in a specific area or line of business, business partner
data, location and contact information of business partners and sales organizations.
Business partner is a general term for parties connected with the sales process at
the customer’s side. Sold-to-party and ship-to-party are typical examples. All other
data entities contain transaction data, which is changed frequently during business
processing. This includes the sales orders that reference specific products, their
deliveries, invoices for delivered orders and accounting information, which covers
the financial view of the sales process.

Figure 4.5 depicts an overview of the database schema as taken from a real
enterprises transactional system. It shows the excerpt of the tables used in the order-
to-cash process, their basic relationships, and the most important attributes. The
number of columns within the tables of this original schema is quite large, varying
between 5 and 327 columns. The total number of columns is 2,316, at least an
order of magnitude more than in the standard benchmarks discussed in Sect. 3.2.
One reason for this large amount of attributes is the occurrence of redundant values
and pre-computed aggregates in the original data set. This is an optimization so far
used to speed up data access and to avoid joins. Because of the large number of
columns in the database schema, only those accessed most often in the transactions
and queries, which are going to be introduced in the following sections, are depicted
in Fig. 4.5.

A general pattern, which can be derived from this database schema, is that each
set of tables contains a header and line item table. This conforms to the setup of
a database in second normal form. Header tables contain only general information,
e.g., creation date and information applicable to the entire set of line items belonging
to it like the buyer who initiated the sales order. General information of the header
depends on an identifier, e.g. order ID as the identifier of a sales order header.
Detailed information stored in the line item tables is fully dependent on the entire
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primary key, which in this case would be a composite key of the header identifier
the item belongs to (e.g. order ID) and a position identifier (e.g. order item ID).

What breaks the third normal form in this schema is the fact that header as
well as item tuples contain non-key columns that are mutually dependent. To give
an example, the sales header table contains a reference to the customer via the
identifier of the customer, but also additional data about the customer’s assignment
to specific groups. This additional data solely depends on the customer identifier
and is independent of the sales order itself. Similar behavior can be observed in
the sales item table that contains references to products via their identifiers and
a description of the product. Finally, the header tables are not in second normal
form either because they contain summary data about their line items such as the
summarized net value of a sales order or the aggregated weight, and volume of
ordered products. Thus, the database schema of CBTR is in accordance with the
first normal form (1NF).

The header and item pattern mimics the structure of documents, e.g., a sales
order document, or a bill. Such documents consist of a document header and the
line items. A line item belongs to exactly one header and a header contains at least
one line item. In the following, the tables and their most important attributes will
be described.
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Fig. 4.5 Database schema in first normal form

Information stored in the sales document header table is the order date, requested
delivery date, sold-to-party, and sales organization. A record in the sales document
line item table includes the ordered material, ordered quantity, allowed deviation
from the ordered quantity, weight, and volume information. The business partner
relation contains additional information about parties with specific roles and their
contact information. Different roles can be sold-to-party, ship-to-party, payer, or
vendor of a material. Consequently, if the ship-to-party is given on line item level,
differing from the information given in the header, the header will be overridden
for this case. The sales business data table holds data for each line item only if a
deviation from the data given in the header occurs, such as pricing, billing, invoice
dates, and payment methods.

Records of the delivery header table include shipping and receiving point data,
what type of delivery will be applied, when the goods are going to be picked, moved
and loaded, and ship-to-party to mention the most important. Additional information
stored in the delivery line item table is the material group, plant, storage location,
the actual quantity delivered, material availability date, and redundant weight and
volume information when compared to the sales order tables.
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Redundancy such as the weight and volume information being stored again
within the different sets of tables referring to the different process steps can be
observed at many points of this particular database design. Chmura and Heumann
[35] describe that a reason for denormalizing a normalized database is to improve
performance. Joins add a significant overhead to computing performance and
denormalization reduces the number of joins.

Billing document headers hold information about billing type, billing category,
shipping conditions, customer group, payment method, and destination country.
Billing types are for example invoice, cash sale, rebate correction. If a bill is
created from a previously created sales order, billing category is, for example, “order
related billing document”. Another example is periodic billing documents that are
automatically triggered. Billing document line item data contains the actual billed
quantity, business area, date for pricing and exchange rate, and references to the
according sales document and delivery item. The condition table, amongst others,
has information about condition type, and condition pricing date. For example, the
condition type specifies, whether during pricing, a price, a discount, a surcharge, or
other pricing elements, such as freight costs and sales taxes are applied.

Incoming payments and clearings of items in open bills (open items) are recorded
in the financial accounting tables. Accounting document header data includes the
company code, fiscal year and period of the booking, posting date, an inter-company
posting procedure number, currency key, and exchange rate to name a few. The
accounting document line item, also called accounting document segment, includes
the clearing date (if cleared, else empty), account type, debit or credit indicator, and
tax code.

The different table sets are connected via their line items. The path of a line
item can be traced from the sales order, over the delivery to the final payment. As a
result, no one-to-one relationship exists between a sales order document, a delivery
document, and the billing document. In fact, a delivery document either may span
several sales order documents or may be only a partial delivery, meaning that the
line items of one sales order document can be split over several deliveries. This is
also true for billing documents where a customer may trigger several orders but
wants to pay in one go after all of the orders have been delivered. The alternative,
where a billing document covers only part of a delivery is rare but also possible.

Master data is referenced throughout the scenario in all transactional tables.
Master data tables are customer detail and product detail tables. Customer detail
tables contain the name information of the customer, his contact data, e.g.,
addresses, and contact persons in case of companies, account type, e.g., global
or local. Customers or business partners may play different roles in the order-
to-cash process. They, for example, act as buyer, sold-to-party, ship-to-party,
consultant, carrier, or intermediary. Product master data contains specifics about
the sold products, e.g., weight, volume, dimension data, references to constituents
or ingredients, the plant where production takes place, but also about the sales
organization offering that product, and the minimum order and delivery quantity
(minimum package size) if applicable.
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4.3 The Benchmark Queries

In this section, the OLTP and OLAP queries that contribute to the mixed workload
of CBTR will be introduced. Furthermore, statistics about the contributions of the
OLTP transactions as they are based on the operations of a real enterprise system
and the table access profiles of all queries are provided.

4.3.1 Transactions

The transactional side of the benchmark consists of queries with mixed read and
write access, as well as queries with read-only access. Transactions with mixed
access are the following:

1. Create new sales order
2. Create shipping document
3. Create billing document
4. Record payments and clear open line items

The read-only OLTP transactions are:

• Show detailed sales orders
• Display sales orders of a given period
• Show open items in a given period
• Display customer details
• Display product details

Create New Sales Order

For the creation of a new sales order, the following data has to be entered:

• Order type, commonly used types are standard order, returns, delivery free
of charge

• Sold-to party, ship-to party and related data like shipping address
• Order date
• Requested delivery date
• Payment method

Some of this data, for example, order date, shipping address or payment method
is selected from master data or default values are initially chosen that can be changed
by the user entering the sales order into the system. Thus, data entered by the user is
completed by lookups in the general customer data table and general material data
table. Descriptions, weight, volume and dimension information is retrieved from the
material table and customer contact information is fetched from the customer table.
In case a customer is not maintained in the system, a new entry has to be created.
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Order header:
Selection from
Customer data on customer ID
Customer sales data on customer ID
Customer partner function on customer ID, division,

sales organization, distribution channel
Address data on address ID
One row insertion into sales header

For each line item:
Selection from
Product data on product ID
Product description on product ID
Product sales data on product ID
One row insertion into sales item
Optional insertion into sales business data
For each specified role:
One row insertion into business partner

Listing 4.1 Transaction profile for sales order transaction

For each sales order line item, the ordered product and the order quantity
have to be entered. To complete the sales order, a sales order number is assigned
automatically, the creation date is saved, and the default value for a delivery date,
e.g., the next business day after the sales order has been created if no other date has
been specified, is inserted.

The transaction profile for creating a new sales order is shown in Listing 4.1.
It includes the selection of context data from the customer and product master data
tables, the creation of a new row for the order in the sales header table and the
creation of a row for each ordered item in the order item table. Business partner
data about the parties taking part in this transaction and optional information per
sales item about the sales process, for example, customer group, pricing conditions,
means of transport, or rebate can be stored as well.

Create Shipping Document

Shipping documents can either be created automatically based on sales orders (one-
to-one relationship) or manually. If created manually, a check against the sales order
tables has to succeed, that all items to be delivered have been ordered beforehand
and are sent to the same receiving party. Line items in a shipping document may
have been ordered in different sales orders. Therefore, a reference is inserted to the
according sales document line item in the shipping item table.

The transaction profile for the shipping transaction is shown in Listing 4.2.
The transaction comprises selecting context data from the sales item table and
inserting new data into the shipping header and shipping item tables.
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Shipping header:
One row insertion into shipping header

For each shipping item:
Selection from sales item for referencing the sales

order line item on order ID and order item ID
One row insertion into shipping item

Listing 4.2 Transaction profile for the shipping transaction

Create Billing Document

Billing is processed in multiple alternative ways: a billing due list can be created
and processed automatically, e.g., at a certain time each day, or a billing document
can be processed manually based on a work list. The creation of billing documents
includes a check if all referenced line items have been delivered before issuing
the bill. In case of the manual creation, the billing type has to be entered and if
necessary, the reference to a sales order document has to be provided.

Furthermore, the creation of billing documents triggers the creation of the
respective documents in the accounting system. Initially, the line items are marked
as open items. Open line items are those items that have been delivered and billed,
but not yet been paid for. The transaction profile of the billing transaction, including
forwarding information to financial accounting is specified in Listing 4.3.

Again, context data is retrieved from the transaction data tables of sales and
shipping that has been inserted in previous process steps and new rows are
inserted into billing and accounting header and item tables. If additional conditions
are specified, for example a discount for a good customer or an alternative price is
provided, new rows are added to the sales conditions table including references to
all associated items of the sales, shipping and billing tables.

Record Payment and Clear Open Line Items

Clearing of open line items includes checking open line items from the database and
finding those that are referenced by an incoming payment document. The respective
line items are closed by insertion of the clearing date and the clearing document
number. The query is composed of the selection of the items to be paid and updates
of them, see Listing 4.4 for the transaction profile.

Show Detailed Sales Orders

Since displaying complete documents is similar for sales orders, delivery, billing,
and accounting documents, the necessary steps are described using sales order
documents as an example. Sales order documents to be shown can be selected
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Billing header:
One row insertion into billing header
For each specified condition:
One row insertion into sales conditions
One row insertion into accounting header

For each billing item:
Selection from
Sales item on order ID reference and order item ID

reference
Shipping item on shipping ID reference and shipping

item ID reference
One row insertion into billing item
One row insertion into accounting item

Listing 4.3 Transaction profile for billing transaction

Selection from accounting header on accounting ID,
company code, fiscal year

For each accounting item:
One row update of accounting item, adding the clearing

date and billing ID of the clearing document where
fiscal year, accounting ID and company code match
the selected accounting header tuple

Listing 4.4 Transaction profile for clearing open items

SELECT OrderID, OrderItemID, ProductID, ProductText,
OrderQuantity, ConfirmedQuantity, SalesUnit,
NetValue, Currency, SoldToParty

FROM SalesHeader AS sdh, SalesItem AS sdi
WHERE sdh.OrderID = @DocumentNumber
AND sdi.OrderID = sdh.OrderID;

Listing 4.5 Show sales order by key

by key, which is the document number. Listing 4.5 provides an example for the
SQL statement. Here, the sales header and sales item tables are joined on document
number to retrieve attributes of the sales order residing in the two tables.

Display Sales Orders of a Given Period

Access by key, however, is a rather infrequently used case and may happen directly
after a sales order has been created and the automatically created sales document
number is still shown. A case more often used is displaying today’s, yesterday’s
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SELECT OrderID, SoldToParty, OrderDate, NetValue,
Currency

FROM SalesHeader
WHERE CustomerID = @CustomerID
AND OrderDate BETWEEN "01.10.2011" AND "31.10.2011";

Listing 4.6 Show sales orders by period

SELECT ah.CustomerID, ah.AccountingID, ah.CompanyCode,
ah.FiscalYear

FROM AccountingItem AS ai, AccountingHeader AS ah
WHERE ah.PostingDate BETWEEN "01.09.2011" AND
"30.09.2011"
AND ah.CompanyCode = ai.CompanyCode
AND ah.AccountingID = ai.AccountingID
AND ah.FiscalYear = ai.FiscalYear
AND AccountType = "Debitor"
AND ClearingDate= " "

ORDER BY ah.CustomerID, ah.AccountingID;

Listing 4.7 Show list of open items

or last week’s documents, or showing recent documents for a certain customer.
Listing 4.6 gives an example SQL statement that retrieves sales orders created in
October 2011. After this query, the provided identifiers are used to retrieve details
of the selected sales orders.

Show Open Items in a Given Period

For dunning, a list of delivered and billed, but not cleared items has to be created
from the database, from which the items to be dunned can be chosen. Selection
criteria if applied (one may also show all open items) may be the date, sales
regions, or certain customer groups. The dunning level is determined referring
to the payment due date and previous dunning actions. See Listing 4.7 for an
example SQL statement showing all open items of September 2011. Items, for
which payment has not yet been received have an empty clearing date by which in
addition to Debitor as account type can be filtered. The result is ordered by customer
and accounting document identifier.

Display Customer and Product Details

Displaying customer and product details, selecting customers by name, and products
by name or description includes a simple join over the respective master data
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SELECT cd.CustomerID, cd.CustomerName, ad.City, ad.
Country

FROM CustomerData AS cd, AddressData AS ad
WHERE cd.CustomerID = @CustomerID
AND cd.AddressID = ad.AddressID;

Listing 4.8 Display customer details

SELECT p.ProductID, p.ProductType, p.IndustrySector,
pd.ProductDescription

FROM ProductData AS p, ProductDescription AS pd
WHERE pd.Language = "English"
AND p.ProductID = @ProductID
AND p.ProductID = pd.ProductID;

Listing 4.9 Display product details

tables. An example for the SQL statements is given in Listing 4.8, selecting
customer data by ID using a join of the customer data and address data tables, and
Listing 4.9, selecting product data by ID from the product data table and product
description table.

4.3.2 Analytical Queries

For analytics, the benchmark includes queries that are used for strategic report-
ing and queries showing operational reporting behavior. Through parameteriza-
tion, mainly the period of the analysis, the queries can be varied between operational
reporting and strategic reporting. The set of queries for the benchmark includes:

1. “Daily flash” reporting
2. Average order processing time
3. Order delivery fulfillment
4. Days sales outstanding

Daily flash reporting is composed of two queries that are executed intra-daily and
can be seen as purely operational reporting. The second and third queries collect
statistics that provide the basis to ensure customer satisfaction. If these numbers are
known, a company can set thresholds to provide early interventions in case improve-
ment is needed, heading in the direction of proactive instead of reactive decision
making according to Frolick and Ariyachandra [63]. Days sales outstanding is a
strategic reporting query about customer payment behavior.
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SELECT sdh.OrderDate, cd.Country, sdh.Currency, SUM
(sdh.NetValue) AS SalesRevenue

FROM SalesHeader AS sdh, CustomerData AS cd
WHERE sdh.OrderDate = @today
AND sdh.SoldToParty = cd.CustomerID

GROUP BY sh.OrderDate, cd.Country, sdh.Currency
ORDER BY SalesRevenue DESC;

Listing 4.10 Daily flash query of sales revenue by country

SELECT sdh.OrderDate, sdh.SalesGroup, sdh.
DistributionChannel, sdh.Division, SUM(sdi.Quantity)
AS OrderQuantity, sdi.SalesUnit

FROM SalesHeader AS sdh, SalesItem AS sdi
WHERE sdh.OrderDate = @today
AND sdh.OrderID = sdi.OrderID

GROUP BY sdh.OrderDate, sdh.SalesGroup, sdh.
DistributionChannel, sdh.Division, sdi.SalesUnit

ORDER BY OrderQuantity DESC;

Listing 4.11 Daily flash query of sales quantity by sales unit

Daily Flash Reporting Query

Daily flash reporting is of increased importance, for example, in the seasonal retail
business, where managers constantly need to keep track of daily sales in order
to see how seasonal sales are progressing and to introduce last-minute marketing
campaigns if necessary. Daily flashes include sales revenues, number of incoming
sales orders, and comparisons, e.g., by region, district, and department. Example
queries for sales revenues and sales order number queries are given in Listings 4.10
and 4.11.

The query in Listing 4.10 compares sales revenue by customer region and
retrieves the revenue of sales orders from the sales header table and groups the
results by region using location data stored in the customer data table. Listing 4.11
shows a query that compares order quantities by sales unit using data from the sales
header table for the grouping and aggregating the quantities from the sales item
table. The results are ordered by sales revenue in case of Listing 4.10 and by order
quantity in case of the query in Listing 4.11.

Average Order Processing Time Query

This query determines the average time spent for the entire order processing starting
from the date, the sales order is created till the last item has been delivered to the
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SELECT T.SalesGroup, T.DistributionChannel, T.Division,
AVG(DATEDIFF(T.DeliveryDate, T.OrderDate)) AS

ProcessingTimeDays
FROM (
SELECT DISTINCT sdh.SalesGroup, sdh.

DistributionChannel, sdh.Division, sh.DeliveryDate,
sdh.OrderDate, sdh.OrderID, sh.ShippingID

FROM SalesHeader AS sdh, SalesItem AS sdi,
ShippingHeader AS sh, ShippingItem AS si

WHERE sdh.OrderDate BETWEEN "01.07.2011" AND
"30.09.2011"

AND sdh.OrderID = sdi.OrderID
AND sdi.OrderID = si.OrderIDReference
AND sdi.OrderItemID = si.OrderItemIDReference
AND si.ShippingID = sh.ShippingID)T

GROUP BY T.SalesGroup, T.DistributionChannel,
T.Division

ORDER BY ProcessingTimeDays DESC;

Listing 4.12 Average order processing time

customer over a given time window. This query can either be computed for sales
orders of a specified period, e.g. created in the last quarter, or on the entire data set.
In the example in Listing 4.12, the average order processing time is determined for
the third quarter of 2011 with the help of a built-in function that retrieves the number
of days between two dates. The inner select retrieves and filters the tuples that are
the basis for the aggregation, grouping the result by sales group. Four transaction
tables are joined to create the connection between order date and delivery date.
The result is finally sorted by the computed order processing time.

Order Delivery Fulfillment Query

Order delivery fulfillment calculates the percentage of sales orders that have been
shipped completely and on-time for a specified period grouped, for example, by
sales group or region. The query is similar to the previous one regarding the accessed
tables. An example is given in Listing 4.13.

The outer selection counts the number of delivery line items for sales orders
created in the specified period, whose actual delivery date is equal or before the
requested delivery date stated in the sales order header. The inner selection counts
all delivery items that exist for orders in the previously specified period. In the outer
query, four transaction tables are joined to create the connection between the order
and the final shipment of the items. For the count of total ordered items, the inner
selection accesses the two main sales order tables. The result is sorted by the
delivered quantity.
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SELECT sdh.SalesGroup, sdh. DistributionChannel, sdh.
Division, sdi.SalesUnit, SUM(si.DeliveredQuantity)
AS Delivered, (

SELECT SUM(sdi.OrderQuantity)
FROM SalesItem AS i, SalesHeader as h
WHERE h.OrderDate BETWEEN "01.07.2009" AND
"30.09.2009"

AND sdh.SalesGroup = h.SalesGroup
AND sdh.DistributionChannel = h.DistributionChannel
AND sdh.Division = h.Division
AND sdi.SalesUnit = i.SalesUnit
AND i.OrderID = h.OrderID) AS Expected

FROM SalesHeader AS sdh, SalesItem AS sdi,
ShippingHeader AS sh, ShippingItem AS si

WHERE sdh.OrderDate BETWEEN "01.07.2009" AND
"30.09.2009"
AND sh.DeliveryDate <= sdh.DeliveryDate
AND sdh.OrderID = sdi.OrderID
AND sdi.OrderID = si.OrderIDReference
AND sdi.OrderItemID = si.OrderItemIDReference
AND si.ShippingID = sh.ShippingID

GROUP sdh.SalesGroup, sdh. DistributionChannel, sdh.
Division, sdi.SalesUnit

ORDER BY Delivered DESC;

Listing 4.13 Order delivery fulfillment query

Days Sales Outstanding

Stewart [196] describes days sales outstanding (DSO) as a measure that captures
the ratio of accounts receivable to daily sales. DSO provides a measure in “days”
for the outstanding receivables, thus characterizes customer payment behavior.
The DSO report query is executed for a specific period, e.g. for a quarter, where
the average amount of time that elapses between the billing of items until the
payment is collected from the customer is determined. The formula to calculate
DSO is1:

DSO D Total receivables i:p:

Total credit i:p:
� Period days

With Total receivables i:p: D Total credit i:p: � Received payments i:p:, DSO can
be calculated as follows directly, without the need to store intermediate results:

DSO D
�

1 � Received payments i:p:

Total credit i:p:

�
� Period days

1in period D i.p.
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SELECT ai.Currency, (1 - SUM(ai.Amount) / (
SELECT SUM(bh2.NetValue + bh2.TaxAmount)
FROM BillingHeader AS h
WHERE h.BillingDate BETWEEN "01.07.2011" AND
"30.09.2011"

AND h.Currency = ai.Currency)*91 AS DSO
FROM AccountingItem AS ai, BillingHeader AS bh
WHERE bh.BillingDate BETWEEN "01.07.2011" AND
"30.09.2011"
AND ai.ClearingDate <> " "
AND ai.AccountType = "Debitor"
AND ai.Indicator = "Debit"
AND ai.AccountingID = sh.BillingID

GROUP BY ai.Currency
ORDER BY DSO DESC;

Listing 4.14 Days sales outstanding query

Table 4.1 CBTR query statistics

Query Share Ratio of header to line items

Sales order 30 % 98 % of sales orders have between 1 and 4 line items
Shipping 27 % 98 % of shipping documents have between 1 and 4 shipping lines
Billing 25 % 96 % of bills have between 1 and 4 line items, and 95 % of all bills have

between 1 and 20 additional sales conditions defined with
11 conditions per bill occurring in 65 % of all cases

Clearing 18 % 98 % of accounting documents have between 2 and 12 line items

To select the factors to calculate DSO, the billing and financial accounting tables
have to be accessed. The example for the query in Listing 4.14 selects received
payments (outer selection) and total credit (inner selection) and computes DSO,
where a quarter is chosen as the period of interest (91 days). The result is sorted by
the computed value for DSO.

4.3.3 CBTR Query Shares and Database Access

To provide a realistic scenario, the queries that modify the database have been
recorded from a real enterprise system and are simulated based on that workload.
An overview of the shares of each transaction in this workload and coarse statistics
regarding the characteristics of the underlying data set based on real company data
are given in Table 4.1.

Table 4.2 provides an overview of accesses of all queries to the tables of CBTR.
For each existing access to a table the type is given (Insert – “I”, Select – “S”,
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Table 4.2 Database access of CBTR queries

CBTR queries

Mixed OLTP Read-only OLTP OLAP
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Sales header I* S5 S6 S5 S5 S6
Sales item I* S* S* S6 S3 S2 S4
Sales business data I*
Business partner I*
Shipping header I* S2 S2
Ship. item I* S* S3 S3
Billing header I* S5
Bill. item I*
Sales conditions I*
Accounting header I* S* S5
Accounting item I* U2 S5 S6

M
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Customer data S* S3
Customer sales data S4
Cust. partner funct. S5
Address data S* S2
Product data S* S3
Product sales data S6
Prod. description S4 S3

Update – “U”) and the number of columns accessed (“*” means that all columns
are retrieved for further processing). As an example, a complete row is inserted
into the sales header table by the sales order transaction, marked by “I*”, and five
columns are read from the sales header table by the order processing time query,
marked by “S5”.

4.4 CBTR Measures and Parameters

Two performance measures are provided in CBTR, these are throughput and average
response time. The two measures will be specified in more detail in this section.
Afterwards, the scaling and workload mix parameters to adapt the benchmark to
specific company requirements are described.



4.4 CBTR Measures and Parameters 85

4.4.1 The Throughput and Response Time Measures

Throughput reports the number of queries completed within a given time window
over a time span. As introduced in Sect. 4.4.3, CBTR comprises a mixed workload
of transactional and analytical queries that is controlled via shares that can
be configured. The throughput measure is divided into OLTP and OLAP throughput,
reporting a measured result for both sub-workloads. This is necessary as response
times vary widely between OLTP and OLAP and an average of both would obscure
the actual behavior.

Response time is defined by the time that passes between the moment a client
starts to send a request and the moment that the response is completely received
from the system under test. The average response time can then be computed per
query, query type (mixed, read-only OLTP, or OLAP), or workload type providing a
detailed measure to assess and compare all components of the workload. In contrast
to the throughput measure, a general response time summarizing both OLTP and
OLAP is not recommended as the actual behavior of the different queries and their
reaction to varying database and load configurations will just be smoothed away.

The price/performance and energy measures as are provided by the standard
benchmarks are not discussed here and out of scope for this work. The proposed
benchmark is primarily used to assess system performance and evaluate the impact
of database design decisions and database architectures on the performance of OLTP
and OLAP queries.

4.4.2 Scaling

The results of a benchmark should be relevant for and applicable to small companies
and local business as well as globally operating companies with thousands of
employees using the IT systems. One size for a benchmark does not fit or simulate
the requirements of companies of all sizes. Scaling is an important aspect of
benchmarking to solve this problem. Through scaling, databases of different sizes
can be created. Using scaling, systems of different sizes can be assessed and
workloads of companies of varying dimensions can be simulated. Two aspects
surface when looking at database scaling. The first is scaling the size of the database
and the second is scaling the load within the database. In the following, both aspects
will be discussed.

Scaling the Database Size

Scaling the size of the database refers to varying the size of the tables within the
database. To provide a realistic benchmark, a method is needed that ensures realistic
scaling of the database size. Looking at companies of different sizes and comparing
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these, leads to the result that several strategies of scaling the data set exist. The larger
the company, the more sales departments, for example, depending on regions,
customer groups, or product categories, a company may have. Additionally, a larger
company for example in retail has a higher turnover than a smaller company in
the same branch of business. As a result, one strategy can be to increase the order
throughput. Another strategy is adding more sales departments, while keeping sales
per department constant and, thus, increasing the order throughput for the entire
company.

The above remarks indicate that the tables within the data set should not be scaled
equally. One difference can be seen between transaction data tables and master data
tables. While transaction data tables grow with each business transaction, this is not
necessarily true for master data tables. Business transactions refer to existing master
data in most cases. For example, the sale of a product does not necessarily impose
any change in its product master data. Only if new products are offered, master data
has to be created accordingly. Likewise, the transaction tables grow at different rates.
In Sect. 4.3.3 the shares of the queries within the proposed benchmark as observed
from a real company system are shown. From these shares can be seen that the
sales header table, for example, grows faster in its number of records than does the
billing header table during normal transaction processing. The reason is that 30 %
of all transaction insert one row into the sales header table, while only 25 % of all
transactions insert one row into the billing header table. This imbalance in table
sizes increases with an increasing database size and it should be modeled as well in
the scale-up process.

For scaling up the database size and to keep it simple, CBTR relies on increasing
the sales throughput without adding more sales departments, products, or customers.
This results in the company having sold more products within the same period
increasing the size of the transaction tables, while the size of the master data tables
remains constant. Consequently, the sales header table is used as the base unit of
scaling and the cardinality of all other transaction data tables is a function of the
number of orders in the sales header table. Table 4.3 summarizes the cardinalities,
number of columns, average row lengths and sizes of the tables of CBTR in their
initial size as taken from a real system without scaling. Lengths and sizes given
are examples that can vary with the implementation of data types in the database.
The reference database, the numbers were taken from was MySQL MyISAM
engine [147, Chap. 13] using UTF8 encoding.

Scaling the Load

Compared to scaling the database size, scaling the load is achieved in a simpler way.
Instead of manipulating the database tables, increased load can either be generated
by decreasing think times of clients or by increasing the number of clients accessing
the database concurrently. Think time defines the time between receiving the result
of one query from the database and sending the next query to the database. A
reduction of think times increases the frequency with which clients send requests
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Table 4.3 Initial database table cardinalities, average row lengths and initial table sizes

Average row length Number of
Table name Number of rows (bytes) Table size (MB) columns

Sales header 4;566 2,066 9:4 124

Sales item 10;238 3,247 33:2 224

Sales business data 4;673 1,511 7:1 90

Business partner 23;147 477 1:1 24

Shipping header 9;729 2,963 28:8 169

Shipping item 16;718 4,014 67:1 281

Billing header 28;939 1,600 46:3 98

Billing item 42;717 2,804 119:8 194

Sales conditions 361;251 612 221:1 65

Accounting header 33;668 1.730 58:2 99

Accounting item 129;888 4,489 583:1 327

Customer data 7;881 5,342 42:1 165

Customer sales data 23;341 665 15:5 77

Cust. partner function 16;009 230 3:7 13

Address data 18;692 3,774 70:5 85

Product data 14;404 3,278 47:2 208

Product sales data 9;957 526 5:2 68

Product description 161;476 302 48:7 5

Total 917;294 – 1;408:1 2;316

to the database while the number of clients is constant. In CBTR, load scaling is
achieved by varying the number of clients taking part in the simulation. Think times
are not configured for the clients in CBTR. Clients concurrently send requests to
the database, wait for the response and immediately send the next request upon
receiving the result for the previous request.

4.4.3 Workload Mix

Data processing requirements for analytical processing are different compared to
transactional data processing as discussed in Sect. 3.1 and can be seen in the CBTR
queries introduced in Sect. 4.3. OLTP queries are characterized by simple, mixed
read and write operations. More than 50 % of these operations are lookups [125].
These retrieve subsets of the columns of a table together. For example, descriptive
attributes for a specific sales order and its line items with details are displayed or
selected for updates. Furthermore, they are highly selective, meaning that one or
only a small number of sales order documents and their line item entries are touched,
instead of a huge set of them, e.g., showing all sales orders of a specific customer
in January 2011. Figure 4.6 depicts an excerpt from a sales header table. The access
pattern typical for a lookup transaction is shown in gray shading. Here the sales
orders of the customer with the identifier 1001 are selected.
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Order Date Net Value ...
4969 01/02/2011 Order     5.500,00 EUR 10 103 01/03/2011 0241-77729    1390
4970 01/03/2011 Order    32.838,00 EUR 12 110 01/08/2011 0365-2251-0   1175
4971 01/07/2011 Order    12.200,00 EUR 12 101 01/09/2011 069-467653-0  1001
4972 01/21/2011 Order    28.604,00 EUR 12 110 01/22/2011 0511-123400   2200
4973 01/21/2011 Order    19.719,00 EUR 12 130 01/22/2011 089-456897-0  1033
4974 01/21/2011 Order    46.686,00 EUR 12 101 01/22/2011 069-987654-9  2140

...

5010 01/27/2011 Order    13.020,00 EUR 10 101 01/28/2011 0221-454321-0 2130
5011 01/27/2011 Order    12.156,00 EUR 10 110 01/28/2011 0351-5423-00  1460
5013 01/28/2011 Order   667.700,00 EUR 12 111 01/30/2011 069-467653-0  1001

Order 
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Order 
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Cur-
rency

Distri-
bution 
Channel

Sales 
Group

Requested 
Delivery 
Date

Customer 
Telephone

Cus-
tomer 
ID

Fig. 4.6 Simplified comparison of access patterns of OLTP and OLAP queries

Analytical queries, in contrast, are more resource and computing intensive
including groupings and orderings, for example, by region or sales group. Range
selects and table scans make up more than 50 % of all query types [125]. Thus,
the data sets that are touched are much larger compared to those of OLTP queries.
OLAP queries follow a column-oriented pattern, selecting only a very small subset
of columns from a table to compute the results for a query. Compared to OLTP
queries, OLAP queries are relatively long running due to their low selectivity
and only a small number of columns is usually retrieved. For example, a query
computing the net revenue of sales in January 2011 grouped by sales group only
needs the revenue, sales group and date columns of the sales header table. This
query selects an entire block of the sales order table according to the selected date.
This pattern is depicted in black shading in Fig. 4.6 selecting the aggregated net
value of sales orders grouped by sales group.

The task of mixing the workload is to run these different queries in a predefined
and reproducible manner concurrently on the system under test either in realistic
shares or according to evaluation of specific scenarios. An example for such a
specific scenario is measuring the impact of adding analytical queries to an OLTP
workload. Here, starting from a pure OLTP workload that remains constant through
the entire measurement period an increasing share of OLAP clients could be added
to evaluate how much OLTP response times are affected by the changed workload.

A realistic mixed workload of OLTP and OLAP queries cannot be observed, as
no such system exists, yet. Therefore, the workload is configurable in CBTR with
regard to:

• Share of the OLTP (ST ) and OLAP (SA) sub-workloads, with ST WD fx 2 <j0 �
x � 1g and SA D 1 � ST .

• Share of read-only OLTP queries (SrT ) and mixed OLTP queries (SmT ) within
the OLTP sub-workload, analogously defined as SrT WD fx 2 <j0 � x � 1g and
SmT D 1 � SrT .

Table 4.4 gives an overview for the computation of the shares in the workload
for all queries based on the above parameters. The individual shares for the mixed
OLTP queries have been introduced in Sect. 4.3.3. For example, the share of the
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Table 4.4 Computation of query shares

Type Query Share

Mixed OLTP Sales order SmSales D 0:3 � .1 � SrT / � ST

Shipping SmShip D 0:27 � .1 � SrT / � ST

Billing SmBill D 0:25 � .1 � SrT / � ST

Clearing SmClear D 0:18 � .1 � SrT / � ST

Read-only OLTP SrT i D pi � SrT � ST , with pi WD fx 2 <j0 � x � 1g and
Pn

iD1 pi D 1,
with n as the number of defined read-only OLTP queries

OLAP SAi D pi � .1 � ST /, with pi WD fx 2 <j0 � x � 1g and
Pn

iD1 pi D 1,
with n as the number of defined OLAP queries

sales order query is computed based on its share within the mixed OLTP queries
(30 %) times the probability of occurrence of mixed OLTP queries within the OLTP
part of the workload (SmT) times the probability of the OLTP part of the workload
itself (ST ) within the entire workload.

4.5 CBTR and the Benchmark Properties

In this section, a closer look is taken at how the key criteria summarized in
Sect. 3.3 are reflected in CBTR and discusses the approach taken to create this new
benchmark. The key criteria that are the basis for the creation of “good” benchmarks
are relevancy, repeatability, fairness, verifiability, and being economical. Not all of
these criteria have to be fulfilled in perfection to create a good benchmark, yet they
should not be neglected.

Relevance

In Sect. 4.2, an overview of application areas in transactional systems was given and
the selection of one area as the setting for CBTR was discussed. The order-to-cash
process was chosen, as it is a relevant part of business for each company, regardless
whether it offers consumer products or services. This process is essential to keep the
core business of companies running and it is the basis for many questions of strategic
interest. The order-to-cash process is easily understandable as it is a part of people’s
everyday life as consumers. Nevertheless, the chosen process has been cut out of
a business system composed of many highly integrated processes interacting with
each other. Thus, it models only part of the real world and simulates the observed
behavior. This simulation results in repeatability, simplicity, and manageability.
CBTR is more realistic than other benchmarks, because its data structures are based
on observations of currently used real systems, e.g. providing a larger number of
attributes, that the database has to handle during processing like it is the case in the
real systems.
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Repeatability

A CBTR benchmark run is composed of the setup, the actual run, and the evaluation
of the results. In the setup the database schema is created and data is loaded into the
tables. For the run, a configuration file specifies the types and number of clients
to simulate and the duration of the run. Afterwards, the collected result logs can
be retrieved and analyzed. As a database is newly created for each run and a
configuration can be specified, a run can be repeated.

The server running the database is separate from the one running the benchmark
driver and simulating the clients. Resources used for the simulation are not taken
from the database server and, thus, do not affect its operation. Thereby measured
response times are kept clean from interferences. An assumption is that the network
and the systems running the database and the benchmark driver are stable.

Fairness

The CBTR benchmark is fair as its only requirement for the database systems is
the usage of SQL as query language. CBTR targets relational database systems.
Therefore, this prerequisite is plain, as SQL is the standard language in this area.

Verifiability

Throughput and response time as the benchmark output can be verified with the
system under test manually on the one hand to gain an understanding of the basic
speed of operation. On the other hand, in addition to the clients’ performance,
system performance is monitored during the benchmark run and data is logged for
analysis afterwards.

Economical

The benchmark exercises standard functionality of the database system via a
standard query language (SQL). Extensive adaptation on the side of the database
system, for example in terms of programming, is not required. Normal tuning
of operating system and database server parameters according to the expected
workload, however, is recommended.

Another important aspect for a benchmark to be of value is its distribution
and actual usage and thus a growing community to share and compare results.
Here, the benefit of using existing benchmarks to establish a new benchmark is
their already established acceptance making it easier for the new benchmark to
be accepted. Furthermore, the community is already familiar with how they work.
Thus, depending on the extent of the changes, the effort of becoming familiar
with the workings of the new benchmark is modest. To facilitate understanding,
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the scenario for CBTR has been chosen based on the observation from existing
benchmarks that use scenarios from daily life. The order-to-cash process modeled
in CBTR is omnipresent in everyday life and as a result easy to understand. Yet,
it provides a setting that is complex enough to simulate sophisticated transaction
processing and reporting.

4.6 Summary

The focus of this chapter lies on the introduction and definition of a hybrid bench-
mark that incorporates transactional processing as well as analytical processing and
variable mixed workloads thereof. This benchmark is used in the remainder of this
thesis to simulate mixed transactional and analytical workloads for the analysis
of the impact of logical database schema optimizations on transaction and query
performance. Before this work, no methods to simulate mixed transaction and
analytical processing workloads and compare database systems under such mixed
workloads have been available.

CBTR, the new hybrid benchmark proposed in this chapter, is based on the table
structures and queries observed in a real enterprise system. Its scenario has been
cut out of the business world that comprises many highly integrated processes that
interact with each other. The used order-to-cash process is intuitive and easy to
comprehend, as it is part of everyday life. Yet, the benchmark database schema
is closer to that of enterprise systems increasing the overhead for the benchmark
queries similar to the overhead real-world queries encounter.



Chapter 5
Database Schema Variants for Mixed OLTP
and OLAP

As discussed in Sect. 2.2, a database design optimized for OLAP degrades the
performance of OLTP queries and vice versa. If OLTP and OLAP workloads are to
be consolidated onto one system, the question of how to design the database arises.
Optimizations of the dedicated OLTP and OLAP systems that have evolved in the
past might still be applicable to tune the performance of systems under mixed OLTP
and OLAP workloads. In this chapter, the typical optimizations in logical database
design of OLTP and OLAP systems, summarized in Sect. 2.2, are applied to the
order-to-cash scenario of the CBTR benchmark to create the basis of determining
their impact in mixed workload scenarios. The change of the database schema
according to particular optimizations results in the need to adjust the queries as
well. The query adaptations are summarized into rules in this chapter. If the impact
of specific optimizations under distinct workload mixes within a database system
has been understood and workload changes can be identified that lead to according
modifications in the database schema, these rules could provide a starting point for
automatic adaptation of queries as well.

Figure 5.1 illustrates different types of database schemas that can be observed
in OLTP and OLAP systems. From left to right the database schema types are
ordered according to increase of data redundancy and decrease of the number of
join operations. The dotted areas named OLTP and OLAP include those database
schema types that have been observed in the respective domains.

In OLAP database schemas tables can be pre-joined like in the star schema.
As a result, queries contain fewer joins. Yet, pre-joining of tables can increase
the redundancy within the data set. In the case of the star schema, redundancy
is incurred in the dimension tables if hierarchies are mapped to one table. In the
snowflake schema, hierarchies are normalized into several tables. OLTP schemas,
through normalization, do not incur high levels of redundancy. Here, the goal is to
avoid insert anomalies and update dependencies. The disadvantage of this approach
is that a larger number of joins is needed to reproduce the context of an entity that
may become spread over several tables with a higher degree of normalization. Yet,
for transactional processing this is not a serious challenge as transactions exhibit
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3NF ... 1NF

Type I   ...  Type IV 
ODS           ODS

Snowflake       Star
Schema         SchemaOLTP OLAP

Inserts per Transaction

Data Redundancy

Joins per Query

Fig. 5.1 OLTP and OLAP database schema types

a high selectivity compared to analytical queries. Thus, joined sets have a small
number of entries, e.g., the specific products ordered in a sales order, or the business
partners involved in the deal.

The shown schemas do not belong to distinct classes, but overlap. For example,
the snowflake schema contains normalized dimension tables and the fact table is a
special structure to collect business data of a specific context, e.g., sales revenue.
The class I ODS, which is relevant for real-time reporting, is a copy of a subset
of the transactional data kept in sync with the transactions and therefore contains a
normalized schema as well. The schemas employed in the OLAP domain are thus
a mixture of normalized tables like in the OLTP schemas and additional structures
such as fact tables or pre-computed report tables.

This chapter starts with a comprehensive review of the levels of database
design in Sect. 5.1 to bring database schema variation as the topic of interest for
the application of the proposed benchmark into line with alternative optimization
strategies, which have already been presented in Chap. 2. In Sect. 5.2, a selection
of database schema variants will be presented. These are chosen according to their
relevance in transactional and analytical processing.

5.1 Database Design Variation Levels

Database systems expose a very individual behavior, which heavily depends on the
specific queries, underlying data schema, and physical optimizations. For a hybrid
workload of OLTP and OLAP queries, the task of choosing an optimal database
schema and optimizations according to a specific mix of queries becomes vital due
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Fig. 5.2 Database design variation levels

to the wide range of data access behavior of the individual queries in the combined
OLTP and OLAP scenario.

Figure 5.2 gives an overview of the levels relevant in database design where
variation through optimization can take place. The top layer represents the logical
database design step. It contains the conceptual definition of involved entities,
attributes and their relations and the mapping of the conceptual design to a database
schema that includes the concrete definitions of the structures as managed by the
database, that is, relational tables. In the physical layer, additional access structures
such as indexes to optimize data access and the actual layout of data on the storage
medium are encapsulated.

The definitions of entities and their characteristics and relations between them
given on the conceptual layer are the basis for applications to work on to achieve
logical data independence. If OLTP and OLAP queries in applications were defined
based on these conceptual definitions instead of referencing the structures directly in
the database schema, they would be oblivious to adaptations of the database schema
on the logical design layer and of course independent of changes on the layers below.

Both, the logical and physical database design layers, represent starting points
for optimization. Normalization as a transformation of the tables resides in the
logical design layer and results in different database schemas. Especially for a
composite OLTP and OLAP system, where the workload can tend toward OLTP
or OLAP periodically, autonomous database schema variation according to the
current workload on the logical level similar to autonomous physical database
optimization [81] is of interest.

The logical layer in Fig. 5.2 depicts database schema variation examples
according to normalization. 1NF is the extracted part of a database schema of



96 5 Database Schema Variants for Mixed OLTP and OLAP

a real enterprise system, which is modeled in CBTR. 3NF, document-oriented,
and snowflake schema are its variations to analyze the impact of normalization
under varying mixes of OLTP and OLAP in the workload and in different types of
databases. These will be introduced in Sect. 5.2.

The physical design layer comprises the configuration of tables according to the
storage media, data types, and access structures used and supported by a database
system. Physical database design optimizations and database storage alternatives
were introduced in Sects. 2.2.3 and 2.2.4. As discussed there, much research in
the area of autonomous physical database design optimization has already been
conducted and successfully applied in productive database systems, e.g., DB2
Design Advisor [227]. In the context of composite OLTP and OLAP systems
distinguishing characteristics are already found on the logical layer of database
design, which is an earlier step than physical database design.

The focus of this work lies in finding optimizations in this earlier step. It is the
prerequisite for fine-tuning the database on the lower levels in subsequent steps.
The impact on the performance of queries in mixed workloads of typical database
schemas used in transactional and analytical processing is evaluated.

5.2 Database Schema Variants

This section focuses on variants for the database schema of the order-to-cash
process. One aspect of schema variation in this section is concerned with nor-
malization, the other with the specific structures used in analytical processing.
The denormalization techniques that are analyzed regarding their impact on query
performance in mixed workload scenarios are pre-joining the tables, derivable data,
and redundant data. These techniques have been described in Sect. 2.2.2. While
the increase in the level of denormalization increases redundancy within the data
set and OLTP transactions writing to the database are impeded, the reduced join
complexity can be advantageous for OLAP queries. If reduced join complexity and,
thus, denormalization is of advantage in mixed workload scenarios is a question
of particular interest in column-oriented and hybrid databases. For these, existing
optimizations as used in row-oriented databases are not necessarily applicable or
they lead to different results.

In this section, three schema variants are introduced in addition to the trans-
actional database schema in first normal form already used in CBTR. The steps
taken to define new schema variants are to start with the original schema in first
normal form as defined in CBTR and denormalizing this schema step-by-step by
pre-joining the transaction data tables. Two variants are created in this manner,
which are the document-oriented schema described in Sect. 5.2.1 and a snowflake
schema described in Sect. 5.2.2. The third schema variant is created by removing
derivable data and redundant data creating a normalized schema in third normal
form (3NF) as shown in Sect. 5.2.3. Changing the database schema entails changing
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the queries defined on top of them. The query changes will also be presented in the
following.

5.2.1 Document-Oriented Schema

In the first variant, header and item tables are joined, because header and item
information is mostly requested in combination. To create a schema variant based
on pre-joined tables, the typical queries taking place in a system (the CBTR queries
for the order-to-cash process in the case of this thesis) have to be taken into account
to identify entities to be joined. From a business perspective, the data about the line
items of a sales order is never queried without accessing the sales order header.
Even in contexts such as top n sold products the header information is necessary to
provide the time dimension, as these queries always reference a certain time frame,
for example last quarter. This schema is called “document-oriented”, as it reflects a
complete print-out document of, e.g., a sales order.

Figure 5.3 illustrates the document-oriented schema derived from the schema
introduced in Sect. 4.2.2. From the eight transaction tables comprising header and
item data of sales orders, shipments, bills, and accounting documents, four tables are
obtained, which in each case pre-compute the join between the header and the item
table via the document identifier. As an example, the sales facts table is produced
from joining the sales header table to the sales item table using the primary key order
ID from the sales header table and its pendent in the sales item table for the equijoin
condition. Here, and also for the other three sets an inner join is sufficient in a sound
order-to-cash database to produce the new tables, as a header is invalid without line
items and a line item always belongs to a header. All other tables remain unchanged.

In addition to changing the schema, the queries have to be adapted. The changes
to the queries are classified as follows:

Join-A When replacing the join of tables in the FROM clause of a selection by a
pre-joined table that exactly represents the join in the statement, only the name
of the table in the FROM clause is replaced by the new fact table and the join
conditions used for the pre-computed join in the fact table are removed from the
WHERE clause of the statement. A typical example for this is the pre-computed
join of header and item tables.

Join-B1 For all selections and computations solely based on columns that have
been part of tables where tuples have been multiplied during the pre-join, a sub-
select with DISTINCT command is added to filter out the added redundancy. This
redundancy has been created when the tuples were duplicated for each of their
associated tuples, e.g., header tuples were copied for each of their associated line
item tuples in the header item pre-joined table. The selected distinct columns in
the sub-select match the selected columns in the main select with the addition of
the primary key columns of the former tables that have been multiplied and on
which the selection or aggregation is based (if they are not included already). This
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Fig. 5.3 Document-oriented schema

ensures the correct restoration of the cardinality of the former table according to
the WHERE conditions.

Join-C For inserts to a pre-joined table that presents a one-to-many or parent-to-
child relationship the tuple from the former parent table is duplicated for each
child tuple and a concatenated tuple comprised of all parent and child columns is
inserted. A typical example is the insertion of a new tuple to a pre-joined header
and item table, where header data is duplicated for each of its items.

The orders by period query is a special case of type Join-B1. The results have
to be filtered regarding distinct values because a used table has been expanded,
however, no aggregates are computed. For this query, it is sufficient to only introduce
a DISTINCT in the original SELECT clause without introducing a sub-select to filter
the distinct values. This leads to a fourth type of query change as a special case of
Join-B1:

Join-B2 For all selections solely based on columns that have been part of tables
where tuples have been multiplied during the pre-join and no computation takes
place, a DISTINCT command is added to the SELECT clause to filter out the
added redundancy.
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Table 5.1 gives an overview of the changes in the SQL statements of the queries.
Only the changed parts of the SQL statements are presented and unmodified parts
are abbreviated with “[...]”. Queries not mentioned in the table are not changed
at all. This applies to all accesses to master data.

5.2.2 Snowflake Schema

The next schema variant further increases the level of denormalization by com-
pletely merging the sales and delivery entities on one hand and the billing and
accounting entities on the other hand. Thus, joins between transactional data tables
can be completely avoided in the OLAP queries making up the workload of CBTR.
This schema variant resembles a snowflake schema with shared dimension tables. It
represents the maximum level of denormalization that is appropriate for the set of
OLAP queries given in CBTR. No changes are applied to the master data tables to
create a star schema, because the CBTR OLAP queries would not benefit from joins
between dimension tables that represent the master data.

Figure 5.4 illustrates the snowflake schema variant. As can be seen two fact tables
have been created. The two fact tables share the product and customer dimension
tables. The sales-shipping facts table is produced by a left outer equijoin of the
sales facts table to the shipping facts table introduced in Sect. 5.2.1. The join is
computed on the order ID reference and order item ID reference foreign keys, which
are removed in the pre-joining step. The left outer join is used, because shipping
data may not be present for some sales orders, but a sales order always exists for
shipments. However, a shipping may cover several sales orders, or a sales order
may be split over several shipments. By the left outer join, this relation is retained.
Similarly, the billing-accounting facts table is created by a left outer equijoin of the
billing facts table to the accounting facts table using the billing ID reference and
billing item ID reference foreign keys of the accounting table.

Table 5.2 gives an overview of the changes of the CBTR queries for the snowflake
schema variant. Only the differences to Table 5.1 are given as the snowflake schema
variant builds upon the document-oriented schema variant. The change column lists
all types of changes according to the above classification that have to be applied
when starting from the original benchmark schema in first normal form. In the daily
flash query only the accessed table is exchanged with the new pre-joined table, but
no other changes are included as the selection refers to the former sales header
and the original tuples are filtered by the distinct selection on order ID, which is
already included in the document-oriented schema variant. A similar behavior can
be observed for the orders by period and open items transactions.

For the write-access OLTP queries, another type of change has to be introduced
in the case of the snowflake schema. The fact tables now consist of transac-
tion tables where new tuples are added in different phases of the order-to-cash
process. For example, the sales-shipping fact table combines data that is created
during sales order processing and shipment processing. Shipment data may not be
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Table 5.1 CBTR query changes for the document-oriented schema variant

Query Change Statement (shortened)

Order by key Join-A SELECT [...]
FROM SalesFacts
WHERE OrderID = @DocumentNumber;

Orders by period Join-B2 SELECT DISTINCT OrderID, SoldToParty,
OrderDate, NetValue, Currency

FROM SalesFacts
WHERE CustomerID = @CustomerID
AND (OrderDate BETWEEN "01.10.2011"

AND "31.10.2011");
Open items Join-A SELECT [...]

FROM AccountingFacts
WHERE PostingDate BETWEEN "01.09.2011"

AND "30.09.2011"
AND AccountType = "Debitor"
AND ClearingDate= " "

ORDER BY [...];
Sales order Join-C For each sales item, a concatenated sales header-item

tuple is inserted
Shipping Join-C For each shipping item, a concatenated shipping

header-item tuple is inserted
Billing Join-C For each billing and accounting item, a concatenated

billing and accounting header-item tuple is inserted
Clearing – No major changes, only adapt the tables to be accessed
Delivery fulfillment Join-A SELECT [...], (SELECT [...]

FROM SalesFacts sf2
WHERE sf2.OrderDate BETWEEN

"01.07.2009" AND "30.09.2009"
AND sf.SalesGroup = sf2.SalesGroup
AND sf.DistributionChannel = sf2.

DistributionChannel
AND sf.Division = sf2.Division
AND sf.SalesUnit = sf2.SalesUnit) AS

Expected
FROM SalesFacts AS sf, ShippingFacts AS

shf
WHERE (sf.OrderDate BETWEEN

"01.07.2009" AND "30.09.2009")
AND shf.DeliveryDate <= sf.

DeliveryDate
AND sf.OrderID = shf.OrderIDReference
AND sf.OrderItemID = shf.

OrderItemIDReferenc
GROUP BY [...] ORDER BY [...];

DSO Join-B1 SELECT [...]/ (SELECT [...]
FROM (SELECT DISTINCT [...], bf2.

BillingID
FROM BillingFacts AS bf2
WHERE [...]))*91 AS DSO
FROM (SELECT DISTINCT [...], af.

AccountingID, bf.BillingID

(continued)
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Table 5.1 (continued)

Query Change Statement (shortened)

FROM AccountingFacts AS af,
BillingFacts AS b

WHERE b.BillingDate BETWEEN
"01.07.2011" AND "30.09.2011"

AND af.ClearingDate <> " "
AND af.AccountType = "Debitor"
AND af.Indicator = "Debit"
AND b.BillingID = af.

BillingIDReference
GROUP BY [...] ORDER BY [...];

Processing time Join-A SELECT [...]
FROM (SELECT DISTINCT [...]
FROM SalesFacts AS sf,

ShippingFacts AS shf
WHERE sf.OrderDate BETWEEN

"01.07.2011" AND "30.09.2011"
AND sf.OrderID = shf.

OrderIDReference
AND sf.OrderItemID = shf.

OrderItemIDReference)
GROUP BY [...] ORDER BY [...];

Daily flash Join-B1 SELECT S.OrderDate, S.Country,
S.Currency, SUM(S.NetValue) AS
SalesRevenue

FROM (SELECT DISTINCT [...], sf.
OrderID

FROM SalesFacts AS sf,
CustomerData AS cd

WHERE [...]) AS S
GROUP BY [...] ORDER BY [...];

available during the creation of the sales order. Thus, the according columns of
the fact table, which represent the shipping part, remain empty. They are updated
as soon as shipments are processed. This leads to two more classes of query
changes:

Join-D Inserts to fact tables where data becomes available at a later point in
time result in inserts of incomplete tuples to the database where the missing
information is marked by empty values.

Join-E Inserts to fact tables where part of the tuple already exists in the database
are converted to updates of the referenced tuples. Before updating a tuple with
the additional data, an evaluation is necessary if data has been added already to
a tuple to avoid overwriting data. If a complete tuple is already contained in the
database, a copy-on-update is performed, leaving the previously updated tuple
intact. An example where data would be overwritten without a check is a sales
order that is split over two shipments. In case of an update on the condition of
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Fig. 5.4 Order-to-cash tables as a snowflake schema

equal order ID references and order ID item references, data would be lost when
the second shipment updates the sales-shipping facts tuple already containing the
data of the first shipment. Here, at the second insert of shipment data, referencing
the same sales order item, the sales data is copied and a completely new tuple
including the shipment data is inserted.

5.2.3 Third Normal Form Schema Variant

This schema variant is relevant for a subset of the transactions and queries that
utilize pre-computed (derived) and redundant fields in the database. Derived data
and redundant data are semantic concepts that are encapsulated in the application
logic as opposed to pre-joins of tables applied in the prior two schema variants.
An example for a pre-computed field in CBTR is the net value provided in the
sales header table. It sums up the price of a sales item multiplied by the ordered
quantity for all of a sales orders line items. Similar aggregates can be found in
the shipping header table and billing header table. Examples for redundant data
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Table 5.2 CBTR query changes for the snowflake schema variant

Query Change Statement (shortened)

Daily flash Join-B1 SELECT [...]
FROM (SELECT DISTINCT [...]

FROM SalesShippingFacts,
CustomerData

WHERE [...])
GROUP BY [...] ORDER BY [...];

Processing time Join-A SELECT [...]
FROM (SELECT DISTINCT [...]

FROM SalesShippingFacts
WHERE OrderDate BETWEEN
"01.07.2011" AND "30.09.2011")

GROUP BY [...] ORDER BY [...];
Delivery fulfillment Join-A SELECT [...], (SELECT [...]

FROM SalesShippingFacts
WHERE [...]) AS Expected

FROM SalesShippingFacts AS sf
WHERE (sf.OrderDateBETWEEN

"01.07.2009" AND "30.09.2009")
AND sf.DeliveryDate <= sf.

DeliveryDate
GROUP BY [...] ORDER BY [...];

DSO Join-A, Join-B1 SELECT [...] / (SELECT [...]
FROM (SELECT DISTINCT [...]

FROM BillingAccountingFacts
WHERE [...] ))*91 AS DSO

FROM (SELECT DISTINCT [...]
FROM BillingAccountingFacts AS

bf
WHERE (bf.BillingDate BETWEEN

"01.07.2011" AND
"30.09.2011")
AND bf.ClearingDate <> " "
AND bf.AccountType =

"Debitor"
AND abf.Indicator =

"Debit")
GROUP BY [...] ORDER BY [...];

Order by key Join-A, Join-B2 SELECT DISTINCT [...]
FROM SalesShippingFacts WHERE [...];

Orders by period Join-B2 SELECT DISTINCT [...]
FROM SalesShippingFacts
WHERE} [...];

Open items Join-A, Join-B2 SELECT DISTINCT [...]
FROM BillingAccountingFacts
WHERE [...] ORDER BY} [...];

Sales order Join-C, Join-D Add empty values according to the columns needed for
the shipping header and item tuples

(continued)
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Table 5.2 (continued)

Query Change Statement (shortened)

Shipping Join-C, Join-E Update the already created sales order with the new data
for shipping header and item tuples, selecting the
tuples to update by order ID reference and order ID
item reference contained in the shipment

Billing Join-C Add tuples composed of billing and accounting header
and item data, joined by the billing and accounting
identifiers, order ID reference, and order item ID
reference

Clearing – Again, no major changes, only adapt the tables to be
accessed

to be removed in the first normal form schema are product identifier, sales order
item description, product hierarchy information, and sales unit for a product. These
are stored in the sales order tables, shipping tables, and billing tables. Shipping
and billing entries, however, reference the sales order lines from which they are
created. Thus, the above information could be retrieved through this link instead of
redundantly storing the data. The omission of derivable data and redundant data is
applied to the original schema variant in first normal form by dropping the respective
columns and rewriting the queries to

• Compute the previously pre-computed data on the fly for derivable data and
• Retrieve the previously redundant data through additional joins.

Table 5.3 presents the removed attributes, the origin table of the data, the table
and column that replaces the removed attribute, and the affected queries. The
removed attributes are classified into derivable data and redundant data. Concerning
derivable data, the net value aggregates within the header transaction tables are
removed, so that queries using these now need to compute the values based on the
net value attributes of the corresponding items and a grouping on the foreign key
linking the header and the item tuples.

Removed redundant data includes the division and material type attributes stored
in the product data table, which have been copied to the transaction header or item
tables. The country specification stored in the customer data table has been removed
from the billing header transaction table. From the shipping and billing transaction
tables, data has been removed that is already stored in the sales transaction tables
like sales item description, the ordered product (product ID), sales unit, and sales
organization, to name a few. The document currency data stored redundantly in sales
header and item has been removed.

The adaption of write-access OLTP queries is limited to removing those values
in the insert statements corresponding to columns that have been dropped. Selection
parts of the write-access OLTP queries are not affected as data is retrieved either
from master data tables or from tuples created in earlier steps of the process
flow.
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Table 5.3 CBTR schema changes for the third normal form schema variant

Origin table Removed column
Replacement
table

Replacement
column Affected queries

Derivable data
Sales header Net value Sales item Sum of all net

values
Sales order,

orders by
period, daily
flash

Shipping header Net value Shipping item Sum of all net
values

Shipping

Billing header Net value Billing item Sum of all net
values

Billing, DSO

Redundant data
Sales header Division Product data Division Processing time,

delivery
fulfillment,
sales order

Sales item Division Product data Division Sales order
Document

currency
Sales header Document

currency
Order by key,

sales order
Shipping header Document

currency
Sales header Document

currency
Shipping

Sales organization Sales organization
Shipping item Sales organization Sales header Sales organization

Sales item
description

Sales item Sales item
description

Product ID Product ID
Product hierarchy Product hierarchy
Sales unit Sales unit
Material type Product data Material type
Division Division

Billing header Billing date Shipping header Billing date DSO, billing
Division Product data Divison Billing
Country of

destination
Customer data Country

Billing item Sales item
description

Sales item Sales item
description

Product ID Product ID
Product hierarchy Product hierarchy
Sales unit Sales unit
Division Product data Division

Of the read-only OLTP queries, only order by key and orders by period have to be
adapted. A simple exchange of the selection of currency from the sales item table
to the same-titled column of the sales header table is carried out. Both tables are
already used in the statement in its original form. In the orders by period query, a
join to the sales item table via the order ID and a grouping by order ID are added to
compute the sales order net value. The changes to the syntax for the query statement
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SELECT sh.[...], SUM(si.NetValue)
FROM SalesHeader AS sh, SalesItem AS si
WHERE sh.CustomerID=[...] AND (sh.OrderDate BETWEEN

[...])
AND sh.OrderID = si.OrderID

GROUP BY sh.OrderID,sh.SoldToParty,sh.OrderDate,sh.
Currency;

Listing 5.1 3NF version of show sales orders by period

SELECT [...]
FROM (SELECT DISTINCT [...], pd.Division
FROM [...], ProductData AS pd
WHERE [...] AND pd.ProductID = sdi.ProductID)T

GROUP BY [...] ORDER BY [...];

Listing 5.2 3NF version of average order processing time

are presented in Listing 5.1, based on the complete statement given in Listing 4.6
on page 78. The remaining OLTP queries rely on master data tables or on those
columns of transaction tables that have not been changed.

All OLAP queries need to be adapted to this schema variant. The daily flash
query is subject to the same adaption as the orders by period query, except that the
GROUP BY clause is already contained in the original statement. In the average
order processing time query, the selection of the division from the sales header table
is exchanged for the selection from the product data table and the corresponding
join via the product ID is added. The changes to the statement are presented in
Listing 5.2 based on the statement given in Listing 4.12 on page 81. Similar to the
average order processing time query, the order delivery fulfillment query is changed.
Here, in the outer, as well as the inner selection, a join to the product data table is
added for the access to the Division value.

In the days sales outstanding query, two attributes have to be exchanged. One is
the aggregated net value so far taken from the billing header table, which has to be
computed based on the billing item table now. The other is the billing date so far
taken from the billing header that was a copy of the billing date stored in the shipping
header. For the net value computation, a join to the billing item table is added via
the billing ID. The filter of the billing date from the billing header is replaced by
a SELECT clause, which joins the billing item table to the shipping header table
via the shipping ID reference and returns all billing IDs in the period of interest. In
the outer SELECT, the join to the billing header table becomes superfluous and it
is removed including the corresponding join condition. The changes to the SQL
statement based on the original statement given in Listing 4.14 on page 83 are
presented in Listing 5.3.
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SELECT [...] / (SELECT SUM(bi2.NetValue)+SUM(DISTINCT
bh2.TaxAmount)

FROM [...], BillingItem AS bi2
WHERE bh2.Currency = [...]
AND bh2.BillingID = bi2.BillingID
AND bi2.BillingID IN (SELECT DISTINCT bi3.BillingID
FROM BillingItem AS bi3, ShippingHeader AS h
WHERE bi3.ShippingIDReference = h.ShippingID AND
h.BillingDate BETWEEN "01.07.2011" AND "30.09.2011"

))*91 AS DSO
FROM AccountingItem AS ai, BillingHeader AS bh
WHERE ai.ClearingDate <> [...] AND ai.BillingID IN
(SELECT DISTINCT bi3.BillingID FROM BillingItem AS

bi3, ShippingHeader AS h
WHERE bi3.ShippingIDReference = h.ShippingID
AND h.BillingDate BETWEEN "01.07.2011" AND "

30.09.2011")
GROUP BY [...] ORDER BY [...];

Listing 5.3 3NF version of the days sales outstanding query

5.3 Summary

In this chapter, a document-oriented schema, a snowflake-style schema, and a 3NF
schema were defined as three variants for CBTR’s database schema. The goal of
defining these schema variants is to quantify the impact of typical optimizations
applied in database schemas of OLTP and OLAP systems under mixed workload
conditions. The optimizations taken into account here are part of logical database
design. These include or avoid specific database optimizations within the area of
(de-) normalization to analyze their impact.

The original schema of CBTR in 1NF includes redundant data in the form
of master data within the transaction tables to reduce master data look-ups and
derivable data in the form of aggregates. The document-oriented schema introduces
pre-joined tables on top of redundant data and derivable data. The former header
and item tables of the 1NF schema have been pre-joined based on the observation of
frequent joined accesses to those tables. The snowflake-style schema additionally
introduces report tables preparing the data for the OLAP queries. The variants
mentioned until now are increasingly advantageous for OLAP queries. The last
variant in 3NF is favorable for OLTP queries. For this variant, all redundant and
derivable data, pre-joined and report tables were removed.

If the database schema is changed, the queries on top have to be adapted as well.
Rules that define how to change the SQL code of the queries have been defined
based on the table changes in the schema variants.
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Chapter 6
The CBTR Tool Chain

The tool chain to assess database systems according to mixed workloads is
composed of three parts. Figure 6.1 provides an overview of these parts. The
first comprises database specific scripts to create the database schema (tables and
indexes) and to load the benchmark base data into the database system that is
going to be tested. The second part covers the simulation of a specific workload
configuration – a benchmark run. The last part relates to the analysis of the log files
from one or several benchmark runs and the visualization of results.

Section 6.1 describes the preliminaries before running the benchmark and what
is needed for cleanup afterwards. This section also presents how the workload is
configured, how the benchmark driver is implemented, and what output is produced
during the benchmark runs. In Sect. 6.2, examples are given what reports and
visualizations are provided by the implemented tool chain. Section 6.3 closes this
chapter with an outlook on possible further work concerning the tool chain.

6.1 The Benchmark Run

A benchmark run is controlled by the CBTR driver. The CBTR driver is imple-
mented as a multi-threaded Java [158] application that communicates with databases
via JDBC [157]. To avoid interferences, e.g., through shared resources, between the
CBTR driver and the database during the tests, the CBTR driver should reside on an
own server instead of being executed on the same server that runs the database.

Figure 6.2 illustrates the components of the CBTR driver. One of the threads
manages the general driver functionality (benchmark controller) including client
setup, instantiation and buffering of query queues, and the setup of the logger and
result collector. Through the DB service component, each client receives an own
JDBC connection to the database that is used to send requests.

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9 6,
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Benchmark Run Preparation and Tear-Down

The database setup includes the creation of the tables and the optional creation of
indexes. The schema definitions are provided as SQL commands in files that are
read by the data loader. Loading of a base data set is also part of the database
setup, as the database should be pre-filled with data before the benchmark starts, so
the read-only queries do not encounter empty responses. For loading the data, the
databases own client tools are used as most databases provide clients that allow a
high-performance bulk load of data from text files.

During a benchmark run, the data set is modified through the mixed access
queries. Before each benchmark run the database has to be reset to its initial state so
that benchmark results are reproducible and always the same data set is queried for a
given scaling factor. Such a reset can either be executed by undoing all write queries
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Table 6.1 Client types and workload components

Workload type

Mixed OLTP Read-only OLTP OLAP

Client type Mixed OLTP/OLAP X X X
OLTP X X
OLAP X

performed during the benchmark run or by destroying and recreating the database.
Furthermore, the database caches need to be cleared, e.g., by restarting the database
server.

Workload Configuration

The workload is controlled via the number and types of clients simulated during the
benchmark run. The client setup is retrieved from a configuration file.1 It specifies
the types of clients to simulate and how many of them to run. The configuration file
furthermore includes the server and database parameters to set up the connections.
Three types of clients can be specified. These are (i) OLTP clients, (ii) OLAP
clients, and (iii) mixed OLTP/OLAP clients. Mixed clients behave according to
the workload shares as defined in CBTR (Sect. 4.4.3). OLTP and OLAP clients are
additional client types that allow for the specification of pure OLTP and OLAP
workloads to run concurrently. Here, the OLTP and OLAP shares of the entire
workload depend on the number of clients defined.

The configuration file furthermore contains two parameters to adjust the shares
for the workload components these clients execute. The parameters control the
behavior of clients in the sense of what queries are chosen during the benchmark
run. Parameters are the read-only OLTP share and the OLAP share. Both can
be defined within the value range of Œ0 W 100�. The three workload components
controlled by these parameters are mixed OLTP, read-only OLTP, and OLAP.
Table 6.1 provides an overview of the client types and which workload components
they can potentially execute (depending on the configuration of the read-only OLTP
share and the OLAP share).

The read-only OLTP share parameter is relevant for OLTP clients and mixed
OLTP/OLAP clients and specifies the portion of read-only OLTP queries from the
OLTP part of the workload. A share of 100 % has the effect that no mixed OLTP
queries are executed. Thus, no new data is written to the database. The workload in
this case is purely read-only. Any number n 2 Œ0 W 100� states that n % of the OLTP
queries executed are of type read-only OLTP. The OLAP share parameter is relevant
for mixed OLTP/OLAP clients only and controls the portion of OLAP-style queries.

1See Listing B.1 for the complete contents of the configuration file.
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An OLAP share of 0 % turns a mixed OLTP/OLAP client into a pure OLTP client.
Reciprocally, an OLAP share of 100 % turns the client into a pure OLAP client.

According to the configured shares, clients obtain their execution instructions
from the query queues. Query queues contain the OLTP queries and OLAP queries.
There are three query queues, one for each of the above mentioned workload
components:

• Mixed-access OLTP query queue
• Read-only OLTP query queue
• OLAP query queue

The mixed-access OLTP query queue contains complete insert, select, and update
statements that can directly be executed by a client. The reason for this is that a real
OLTP workload, which has been retrieved from execution traces and the respective
data in the database, is replayed during the benchmark run. The mixed OLTP query
queue provides a stream of those queries for OLTP clients that are ready to execute
the next mixed-access OLTP query. The read-only OLTP query and the OLAP query
queue contain SQL query skeletons that are parameterized by the clients during
runtime.

Workload Simulation

In the configuration file, the length of the benchmark run and an optional warm-up
time are given. The goal of the warm-up is to let the database pre-load data and fill its
caches. During this period, query run times and results are not logged. A warm-up
time has to be determined and configured for each database system under test.

After its creation, each client runs in an own thread with its own database
connection to simulate an independent user. The database connection is set up by the
benchmark controller and managed by the DB service. The run of a client consists
of two steps: (i) getting the next query to execute and (ii) executing this query.

To get the next query to execute, a client, according to its type, polls the
respective query queue. In the case of read-only OLTP and OLAP queries, SQL
query skeletons are retrieved from the query queue, which need to be parameterized.
Concrete parameter values are chosen from a pre-defined set that contains valid
values included in the database. Concrete values to fill the SQL skeletons are chosen
randomly.

Once the SQL statement for the query is complete, it is send to the database. The
time between the moment of starting to send the query until a response is received
from the database is measured and is sent to the result collector as an event to be
recorded. Meanwhile, the client can immediately proceed with retrieving the next
query from a query queue and executing it.

The execution of a client stops if one of the following conditions is reached:

• The maximum number of cycles per client (see run count as specified in the
configuration file in Appendix B.1) is reached or the benchmark run time is up,
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• This client or another one encounters an error, or
• No more queries are available from the OLTP queue in a workload containing

mixed-access OLTP queries.

Once all clients terminate, the benchmark run is over.

Benchmark Log Files

The result collector and logger receive events from the clients to record mea-
surement results and status log file entries. The results of a benchmark run are
stored in a file2 for later analyses. The result log file contains a header line storing
general information about the benchmark run, including the database under test,
workload configuration, and individual comments. The rest of the result log file
contains one line for each statement executed during the benchmark run. Log file
entries for queries that contain multiple statements, such as, mixed-access OLTP
queries, occupy several lines. Such a line contains details about the executed query
(kind, parameters, statement), statistics about its execution (start time, end time, and
resulting run time), the results (number of columns and rows in the result set), and
which client executed the query.

The status log files are mainly used to retrieve additional information about a
benchmark run, e.g., exceptions that do not disrupt the entire run, but are important
for the final benchmark statistics. An example are lock wait timeouts, which abort
the execution of a statement after a pre-configured interval. These queries find their
representation in the result log file as well. The given response time then, however,
has to be treated differently as the execution was interrupted and no results were
returned.

In addition to the log files by the benchmark driver, the performance of the
database server is monitored throughout the entire benchmark run. For this purpose,
analysis tools provided by the operating system of the server running the database
are used.

6.2 Visualization of Results

Depending on the length of the benchmark run, the number of configured clients,
and the response times achieved by the tested database, result log files can become
large with several thousand lines. Two tools are offered as part of the current
implementation to visualize results. The first tool produces predefined graphs from
the benchmark log files. The second is a monitor to observe and control benchmark
runs interactively. Both tools utilize Gnuplot [112] for graph creation.

2See Listing B.2 for an excerpt of a result log file.
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Result Analysis Reports

The result visualizer component of the CBTR tool chain includes a set of Python
[173] scripts to create summary reports from the benchmark result log files. From
one log file or a set of log files, graphs and overview tables are created to support
evaluation. Available reports are distinguished into ones containing the results of a
single benchmark run and others that provide an overview over multiple runs, e.g.,
with different workload configurations:

• Response time development is the analysis of a single run that gives an overview
of the development of the response time of a query over the entire benchmark run
as a graph.

• Multi-run statistic reports provide key figures, e.g., median, average, standard
deviation etc. of response times, for all given benchmark runs aggregated by
statement, query, or workload component. See Table B.1 for an excerpt of this
report.

• Series comparison is based on the multi-run statistics report and provides a
graphical representation of a chosen key figure from this report (e.g. average
response time) over several client configurations. The chosen key figure is
marked on the y-axis and the client configuration on the x-axis. This report needs
to be customized according to a classification of runs with the same client config-
uration. The different classes of benchmark runs are shown as series in the graph.

• Throughput is similar to series comparison. It provides an overview of multiple
benchmark runs with different workload configurations and series for the
comparison of different classes of runs of the same configuration. Classes in
this context are, for example, data set size or database schema variants. The
throughput is denoted on the y-axis, workload mix is given on the x-axis.

These reports are an excerpt of possible analysis variants and represent the
ones that have been used in this thesis. More reports can be added as necessary.
Figure 6.3 provides examples for the above introduced report variants. In Fig. 6.3a,
the response time development of the days sales outstanding query of one particular
client configuration is depicted. Figure 6.3b shows the shipping query of the same
client configuration. Each point in the graph represents the run time of one query
of the given type. In both cases, it shows that executions of the chosen queries
are distributed evenly over the entire run of the benchmark that the distribution of
response times stays constant over the entire benchmark run, and at which values
response times cluster as a basis for further analyses.

Figure 6.3c, d show examples for two variants of the series comparison.
Figure 6.3c displays an example benchmark run where the response times of OLTP
requests decrease when adding OLAP clients to a constant baseline OLTP workload.
Different baseline OLTP workload configurations are depicted as series in the graph
varying from one to several OLTP clients executing queries in parallel. Response
times are normalized to the Œ0 W 100� interval with 100 marking the longest response
time in the result set. In Fig. 6.3d, the performance of OLAP requests utilizing
different database schemas (series) is shown using a constant number of 100 OLAP
clients as the base load and varying the number of OLTP clients running in parallel.
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Fig. 6.3 Result analysis report examples. (a) Response time development of days sales outstand-
ing. (b) Response time development of shipping. (c) Series comparison – impact of adding OLAP
to OLTP workload. (d) Series comparison – schema variation. (e) Throughput

Figure 6.3e exemplifies a throughput report. It shows the performance of different
database schemas as series depending on varying OLTP and OLAP shares of 100
clients that are running in parallel.

Interactive Monitor

To allow interactive monitoring of system performance, the CBTR driver is
extended with a user interface through which the configuration of clients can be
changed during run time. New clients can be added and running clients can be
stopped and removed. Queries can be selected for which the graphs are drawn.
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a b c

d e

Fig. 6.4 Average order processing time observation (x-axis: benchmark time in seconds, y-axis:
response time in milliseconds)

Similar to operating system performance monitoring, the graphs are updated in
intervals (configurable length) during the benchmark run. Consequently, the influ-
ence of changes in the workload on response times can be experienced immediately.

Figures 6.4 gives an overview of an example benchmark run with interactive
monitoring. The workload is modified manually by changing the number of clients
every 100 s. Figure 6.4a shows the performance of the average order processing
time query under the first workload mix of one OLTP client and one OLAP client,
labeled in the graph as “.1; 1/”. In Figure 6.4b nine OLAP clients have been added
to the mix after 100 s. 40 OLAP clients have then been added at 200 s (Fig. 6.4c)
and afterwards nine OLTP clients at 300 s (Fig. 6.4d). The last graph in Fig. 6.4e
shows the completed simulation with a final workload of 50 OLTP and 50 OLAP
clients. As it can be seen, response times degrade and their variation intensifies with
increasing load. Furthermore, through the simulation of different workload mixes,
it can be observed that the rate at which performance degrades depends on the types
of the added clients. Adding OLTP clients degrades performance to a lesser extent
than the addition of OLAP clients.

6.3 Limitations and Opportunities

With the help of the benchmark driver and the additional tools described in this
chapter, database systems can be evaluated and compared regarding their perfor-
mance in mixed workload scenarios. The current implementation of the benchmark



6.4 Summary 119

driver constitutes a reactive system for performance evaluation and profiling. In
further work, a combination of these benchmark tools with the results from the data
schema variation discussed in Chap. 5 can be the basis for automated proposition
of database schemas in specific workload situations leading to monitoring of
productive systems and adapting database schemas on the fly.

Another future work stream can be found in the area of interactive monitoring.
The tool could be extended to interactively observe the impact of data schema
variation or changes to physical database design structures, e.g., creation of indexes.
Alternative presentations of the results, for example, moving averages, are also
conceivable.

Think times of clients between queries are currently not simulated. This keeps
the number of requests sent to the database constantly at the configured level to
allow throughput measurements. However, to simulate peak and average load times,
the benchmark tools could be extended with think times. The multi-tenant setting is
an application area for variable load profiles during the simulation. CBTR and its
tools could provide the workload to evaluate distribution strategies for tenants based
on their loads for automated cluster management, like in [181].

6.4 Summary

The tool chain developed for the CBTR benchmark consists of the driver to run a
test, result analysis reports, and the interactive monitor. For the benchmark run, a
configuration of the numbers of OLTP, OLAP, or mixed clients can be given. Fur-
thermore, the shares of read-only and mixed OLTP queries have to be defined. Based
on the configuration, a specific workload mix is simulated in the benchmark run.

The result analysis reports are a collection of proposals how to analyze the results
of one or several benchmark runs, for example, providing an overview of how
response times develop during a run, or the comparison of throughput in different
workload mixes. The goal of the interactive monitor is to allow database experts
direct observation of the impact of workload changes on query response time.



Chapter 7
Evaluation of Mixing the Workload
and Variation of the Database Schema

Three fundamental techniques for performance analysis are listed by Lilja [129,
Chap. 1]. These are simulation, analytical modeling, and measurements of existing
systems. While the last provides the most precise results, it is the most difficult and
time-consuming of the three techniques in addition to a limitation of the validity
of the derived statements to only the measured system. Additionally, measurements
are only possible if the proposed system already exists, otherwise simulation or
analytical modeling have to be used [111, Chap. 3].

A simulation is a program that models important features of the analyzed system.
An analytical model describes the system mathematically focusing on key aspects.
Jain [111] states that to be more convincing, analytical modeling or simulation
should be based on previous measurement. The evaluation of the behavior of
different database types in this chapter is based on a simulation of the workload,
applying the benchmark proposed in Chap. 4, and measurements of response time
and throughput metrics for the simulated workload from the real database systems.

The following section gives an overview of the general test setup. Section 7.2
provides evaluation results of the impact of adding OLAP requests to a constant
baseline OLTP workload. As the next step, Sect. 7.3 details the behavior of the
DBMS under test when different database schemas are used to evaluate if a switch
to a different database schema can reduce the negative impact on performance when
the load and workload mix changes. Finally, in Sect. 7.4, database schema variants
are evaluated under a constant load of 100 clients sending requests in parallel, but
shifting workload shares from OLTP-dominated to OLAP-dominated. The chapter
closes with a summary of the results.

7.1 General Test Setup

The test landscape for the benchmark runs is composed of two machines. The first is
the client machine, which runs the workload simulator that is the benchmark driver.
On the second machine, the database server is running. To eliminate influences
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from other applications on both machines, only the basic processes needed by the
operating system, network, I/O, and the processes needed for the benchmark are
running.

The databases analyzed in the following section, are commercial products
used in industry for daily business in different areas. Three DBMS with differ-
ent data storage characteristics (as discussed in Sect. 2.2.4) are tested: column-
oriented in-memory (CM), row-oriented disk-based (RD), and column-oriented
disk-based (CD).

Results shown in this chapter are normalized to Œ0 W 1� per DBMS with 1 marking
the longest response time in the result set or the highest throughput. The reason
for this normalization is that the focus of the evaluation lies in the application of
the proposed benchmark to make observations on behavioral aspects of database
types under the variation of workload and database schemas. It is not in the scope
of this evaluation to compare the actual performance of different database systems
with each other based on the results. Basic optimizations are applied. These include
standard indexes on primary key attributes, on foreign key attributes, and on further
attributes used in joins, where, and group by conditions.

7.2 Impact of Adding OLAP to OLTP

The goal of this analysis is to evaluate the impact of combining the transactional
with the analytical workload. The following questions are posed and answered in
this section:

1. What is the impact on query performance when adding analytical queries to the
workload, that is, how does the performance of transactions change and to what
degree does it decrease?

2. Do databases show different behavior depending on their storage types (row/
column-orientation, in-memory/disk-based)?

Simulated workload mixes contain the following combinations of the number of
OLTP clients and OLAP clients:

f1; 5; 10; 50; 100g � f1; 5; 10; 50; 100g

Figure 7.1 provides an excerpt of the results of this analysis for the tested DBMS.
These tests use the original database schema variant of CBTR in 1NF. The charts on
the left depict how throughput behaves when adding OLTP and OLAP clients. The
ones on the right show how the response time of mixed OLTP queries changes. The
series in both graphs mark the configured base workload of chosen configurations
that include between 1 and 100 OLTP clients (legend given below the graphs)
running in parallel. The number of OLAP clients specified on the x-axis is added to
these. See Table C.1 for a tabular overview of the results.

The measured throughput in all systems increases with the addition of OLTP
clients because of sending a larger number of short requests to the database.
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Fig. 7.1 Impact of adding OLAP to OLTP on throughput and response time. (a) Row-oriented
disk-based system (RD). (b) Column-oriented disk-based system (CD). (c) Column-oriented
in-memory system (CM)

However, in both disk-based systems (Figs. 7.1a and 7.1b), the addition of OLAP
clients with their more complex requests that access a larger set of data saturates
the system and immediately reduces the throughput of the system. In case of the
column-oriented in-memory database (Fig. 7.1c), the addition of a small number
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of OLAP clients1 to the OLTP workload adds to the throughput, but again a larger
number of OLAP clients saturates the system and negatively impacts throughput.
Compared to the other systems, the throughput of CM decreases to a lesser extent.
While throughput reduction of up to 80 % is encountered in CD and RD, in CM
the throughput is reduced by 30 % at most within the series of OLTP clients that
encounters the largest deviation.

Concerning the response time, the addition of OLTP clients in system CD has
a larger impact compared to the other two. In CD, executing 100 OLTP clients
increases the average response time of OLTP requests by a factor up to 15. The
response times of the same requests increase by factors less equal three in case of
RD and factors less equal seven in case of CM.

The reason behind the response time decreasing so drastically in case of CD is
that the observed operations include many single inserts of tuples that contain a
large number of attributes. The seen behavior can be explained by the fact that in
disk-based column-stores the cost of tuple insertion increases with the width of the
tuple as distinct locations on disk have to be updated for each attribute contained
in the inserted tuple [1]. In comparison, row-oriented systems have to update the
one location on disk where the tuple is added to the table and write the new data
sequentially.

A similar effect, but less pronounced through the advantage of in-memory
random access can be observed in in-memory column-stores. In case of CM, the
database system uses a mechanism for the insertion of fresh data, which does not
immediately compress the new data and defers the updates of the columns. The
storage is separated into a write-optimized differential buffer and the read-optimized
main store, like introduced by Stonebraker et al. [200]. The differential buffer
collects the inserts and updates. It is merged into the main store periodically or
if pre-defined thresholds are met. Therefore, the column-oriented IMDB under test
here does not suffer as heavily from the insertion of wide tuples.

From the perspective of adding OLAP clients, an increase of response time by
factors less equal seven (CD), factors less equal eleven (RD), and factors less equal
ten (CM) can be observed. This increase is much higher in situations with low
OLTP load where OLTP response times are at their optimum than in situation with
high OLTP load where response times are already increased. In high OLTP load
situations, increases by factor less equal two for CD and CM, and factor less equal
six for RD are observed.

7.3 Impact of Database Schema Variation

The question to be answered in this evaluation is whether the variation of the
database schema can reduce the negative impact on query performance when mixing
OLTP and OLAP. The database schemas analyzed here are the original schema

1Determination of the exact turning point has not been the focus of these measurements.
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Fig. 7.2 Impact of change from 1NF to 3NF in CD for mixed OLTP requests

in 1NF introduced for CBTR and the three schema variants specified in Sect. 5.2.
These include two OLAP-style variants, called document and snowflake and one
OLTP-style variant in 3NF that is of a higher normalization level compared to the
database schema provided in CBTR.

Figure 7.2, depicts the same context as the graphs in the previous section with
the addition of a second database schema focusing on the mixed OLTP workload
component. It provides a first glimpse of the impact of changing the database
schema in system CD from the perspective of mixed OLTP requests. The second
database schema depicted as additional series (dashed lines) is the variant with a
higher level of normalization (3NF). As can be seen, for mixed OLTP requests
the database schema in 3NF performs just as well or slightly better than the 1NF
database schema in low OLAP load situations, but outperforms it in situations with
OLAP load. For example, by using 3NF, mixed OLTP request response times are by
factor 2.6 lower for 1 OLTP and 100 OLAP clients running in parallel.

To make a decision if the database schema should be kept or changed, the other
components of the workload have to be considered as well. The conclusion that 3NF
is optimal for mixed OLTP queries from the previous chart is not sufficient to make
a decision on one or the other database schema as it completely neglects the OLAP
part of the mixed workload.

Figure 7.3 provides an excerpt of the performance measurement results for three
DBMS of different types. See Table C.2 for a tabular overview of the results.
The measurement results for each DBMS are clustered into four graphs. The
graphs on the left side show performance changes from the perspective of mixed
OLTP requests, the ones on the right show the impact on OLAP response times.
The x-axis provides the number of OLAP clients (left part) and OLTP clients
(right part) running concurrently and the y-axis provides the average response times
of mixed OLTP request (left part) and OLAP requests respectively for the right part
normalized per DBMS. The upper graph for each database shows a configuration
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Fig. 7.3 Impact of changing the database schema on response time. (a) Row-oriented disk-based
system (RD). (b) Column-oriented disk-based system (CD). (c) Column-oriented in-memory
system (CM)

with low OLTP base load (low OLAP base load on the right). Here, only one OLTP
client runs in the background. The lower graphs display a configuration with high
OLTP base load, that is, 100 OLTP clients running in the background (high OLAP
base load respectively on the right side). The different database schemas are depicted
as series in the graphs.
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As previously mentioned, the 3NF database schema is optimal for the mixed
OLTP workload in system CD. However, when analyzing the OLAP part of the
same workload (see Fig. 7.3b), 3NF yields the worst performance. As can be seen
the queries benefit from database schemas that include special structures to support
analytics, like the pre-joined tables. Obviously, a change to OLAP-style database
schemas impairs the performance of OLTP requests. Depending on, e.g., priorities
of workload components a slight increase of response times for the requests of one
component might be reasonable if the benefits for the requests of another component
outweigh these drawbacks. Regarding these specific measurements, a switch to the
document database schema would benefit OLAP operations resulting in the decrease
of average response time by factor 6 compared to the 1NF database schema and
factor 11 compared to the 3NF database schema. For the mixed OLTP requests,
the respective change to the document database schema would entail an increase of
average response times by factor 1.2 if switched from 1NF and factor 1.4 if switched
from 3NF. This increase might be negligible in comparison, depending on priorities
as previously mentioned.

In case of the row-oriented disk-based DBMS RD (Fig. 7.3a), the document
database schema is also a good compromise for mixing the workloads. For requests
of the mixed OLTP component, performance of requests using this schema is close
to the performance based on the normalized database schemas 3NF and 1NF.
Switching to the document database schema would entail an increase of average
response times by factor 1.7 on average compared to 1NF and 1.6 on aver-
age compared to 3NF for mixed OLTP requests. The performance of the snowflake
schema is so low that the measurement results are omitted from the mixed OLTP
graphs for reasons of clarity and comprehensibility. On the OLAP side, switching
to the document database schema achieves a decrease of response times. OLAP
requests are sped up by factors ranging between 2 and 50 when switching the
database schema from 1NF to document-style, depending on the workload mix
(on average by a factor of 22). For enhanced readability of the graph, OLAP request
response times for the 3NF database schema and some results for the 1NF database
schema have been omitted because they are up to two orders of magnitude lower.

Regarding the in-memory column-oriented DBMS CM (Fig. 7.3c), 1NF is the
favored database schema for the mixed OLTP workload component as well as the
OLAP workload component. Because of its architecture, this DBMS is able to
manage transactional workloads as well as analytical workloads and pre-computed
reporting tables become obsolete.

Figure 7.4 shows the impact of changing the database schema from the perspec-
tive of the throughput in pure OLTP (charts on the left side) and OLAP workloads
(charts on the right side). See Table C.3 for a tabular overview of the data. The
throughput given on the y-axis is normalized per DBMS.

The throughput of systems CD (Fig. 7.4b) and CM (Fig. 7.4c) is much higher in
pure OLTP scenarios as a result of the short and simple queries contained in this part
of the workload (compared to the OLAP queries). In accordance with the previous
observations on response times, the 1NF and 3NF database schemas provide
the highest throughput in the OLTP case. In all cases, the saturation throughput
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Fig. 7.4 Impact of changing the database schema on throughput. (a) Row-oriented disk-based
system (RD). (b) Column-oriented disk-based system (CD). (c) Column-oriented in-memory
system (CM)

is reached earlier for pure OLAP workloads as queries are more complex, e.g., they
include aggregations and sorting operations, and the computations are based on a
larger set of data. In contrast to CD and CM, RD has a higher throughput under the
OLAP workload. The particular observation here is that the Clearing OLTP query
impairs the performance of the entire system due to the update operation it includes
and the locks used on the respective table during the update. Furthermore, this
system profits from the pre-joined tables of the document-style database schema.

The snowflake database schema, which also provides pre-joined tables, however,
trails behind the document schema in all measurements although it provides the best
fit of pre-joined tables with respect to the most complex queries contained in the
OLAP workload component. Its disadvantage is that the simple queries that would
only access one or two tables also need to access these large pre-joined tables and,
thus, they are decelerated, negatively affecting the entire mixed workload.
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Fig. 7.5 Database schema variation in mixed workloads. (a) Row-oriented disk-based system
(RD). (b) Column-oriented disk-based system (CD). (c) Column-oriented in-memory system (CM)

7.4 Database Schemas Under Varying Workload Mixes

In this analysis, the workload mix is varied with a constant number of total clients.
The goal of this analysis is to observe how throughput and response times behave
on top of different database schemas when workload shares are varied but the total
load stays constant (in contrast to the previous section).

Figure 7.5 provides an excerpt of the measurement results. In this test, 100
clients are simulated in total. The x-axis specifies the number of OLAP clients
and the difference to the total number of 100 clients is filled up with OLTP
clients. The graphs on the left side show the normalized average response times
of requests including all three workload components split up into the OLTP
requests (upper part) and OLAP requests (lower part). The graphs on the right show
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the normalized throughput (depicted results are normalized per DBMS). Tables C.4
and C.5 provide a tabular overview of the data.

The 1NF database schema produces the lowest response times for OLTP as
well as OLAP requests and the highest throughput in DBMS CM for all tested
workload mixes (see Fig. 7.5). Response times are only slightly deteriorating by
factor 1.3 at most for OLTP requests and factor 1.9 at most for OLAP requests
with the increasing share of OLAP requests in the workload. Throughput decreases
by almost 40 % with the shift to an OLAP dominated workload, which is natural,
as the requests by themselves process more data and are longer running. A client
waits longer for the completion of a request and as a result, new requests enter the
database less frequently. Consequently, a reduction of throughput can be observed.
The reason is the constant number of clients. Reaching any system boundaries does
not cause the throughput reduction. CBTR can be used for the assessment of system
boundaries, but it was not in the scope of this evaluation.

Despite the fact that the 1NF database schema is favored for this DBMS,
the behavior of requests on top of the other database schema variants should be
noted. The performance of the OLTP-style database schema 3NF decreases with an
increasing share of OLAP requests. In both OLAP-style database schemas, response
times of requests even decrease when tilting the workload toward OLAP.

In system CD (Fig. 7.5b), from the OLTP perspective the performance of the
document-style database schema improves compared to 1NF and 3NF with an
increasing share of OLAP requests in the workload. Furthermore, it outperforms
both OLTP-style database schemas for the OLAP part of the workload. The
reduction in throughput when increasing the OLAP share, while the response times
for the document schema are only slightly changing is again caused by the greater
number of longer running OLAP requests occupying the clients.

In the row-oriented disk-based system, varying the workload mix has no impact
on the choice of the database schema. The OLTP-style schemas remain favored
from the OLTP perspective even with an increased share of OLAP requests. The
same applies to the OLAP-style database schemas for the OLAP perspective. No
switchover from one database schema performing well to another at a certain turning
point in workload shares can be observed.

The throughput graph for DBMS RD, however, shows the document schema as
a clear front-runner from the perspective of the entire workload. For this database
schema, throughput even increases with higher OLAP shares in the workload mix.
The reason lies in the extreme benefit on response times that OLAP requests gain
from a switch to this schema, while it is not the favored schema for OLTP workloads.
With a declining number of OLTP requests in the workload the document schema
approaches its sweet spot, which lies in OLAP dominated workloads. Again, the
snowflake-style database schema lags behind even in OLAP dominated workloads
because the OLAP part of the workload also contains simpler requests that only
access parts of the large pre-joined tables and are thus hindered.
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7.5 Summary

The first evaluation of (i) adding an increasing number of OLAP clients to a base
workload of OLTP clients and (ii) increasing this base line that is the number of
OLTP clients shows that the negative performance impact of increasing the baseline
number of OLTP clients is higher for the column-oriented DBMS than in the
row-oriented DBMS. All three tested DBMS show a similar behavior concerning
the negative impact on response times through the addition of OLAP clients.

The next question analyzed in the evaluation was if the negative impact can be
decreased or can even be avoided through a switch to a different database schema.
The results show that this question cannot simply be answered with “yes” or “no”,
but OLTP and OLAP as the two components of the workload have to be considered
individually. While the switch to a different database schema can benefit the requests
of one workload component, it may impair the requests of the other component
and yet another schema may be the optimum for this component. This leads to the
question how a solution can be found based on conflicting observations.

The results for the row-oriented disk-based database system, for example,
identify the document database schema as a compromise for the mixed workload
resulting in an increase of response time by factor 1.7 on average for OLTP requests,
but a decrease of response times by a factor of 22 on average for OLAP requests
when switching from 1NF. However, considering workload mixes with high OLTP
shares with thousands of requests per minute and low OLAP shares in comparison,
a response time increase by a factor of less than two per OLTP transaction results in
a larger degradation than the benefit caused by the larger factor speed-up of a small
number of OLAP requests.

A quantifier needs to be included in considering the benefits for the entire
workload. Priorities could provide such a quantifier to allow making a decision for or
against a specific database schema. Those priorities could be defined by the domain
experts of a company who are familiar with the critical business paths and know
which workload components (or queries on the lowest level) have to be assigned a
high priority. Alternatively, priorities could be assigned automatically by monitoring
the workload and determining queries that are responsible for the largest share of
the load.



Chapter 8
Conclusion

Benchmarks are the standard method to evaluate, compare, and support the develop-
ment of database systems. With the unification of transaction and analytical
processing systems and the development of new database systems, benchmarking
has to evolve as well. On the one hand, existing benchmarks have so far focused
on either transaction or analytical processing because of the separation of the two
domains. CBTR is the first benchmark to simulate mixed workloads and analyze
the behavior of database systems under these conditions. On the other hand, the
traditional separation of OLTP and OLAP along the characteristics of static, write-
intensive OLTP with its many short transactions and read-only OLAP with its
long complex queries is foundering. Applications have emerged that do not fit into
either category and the workloads themselves are changing, as companies want to
remain competitive. This change in workloads has to be reflected in benchmarks as
well to stay relevant.

The unification of OLTP and OLAP entails the need to reevaluate optimizations
so far applied in analytical and operational systems in mixed workload situations.
These optimizations have conflicting goals. An assessment of their impact on all
workload parts is needed to make a decision on which optimizations to employ in a
specific database and operating a specific workload mix.

The contribution of this thesis is twofold. In the first place, the new benchmark
CBTR has been introduced. Its goal is the assessment of hybrid OLTP and OLAP
database systems. Along with the new benchmark, a prototypical implementation
to run the benchmark and evaluate its results has been developed. Second, logical
database design optimizations so far applied in OLTP and OLAP environments were
examined and their effects were analyzed in different database systems using CBTR.
Thus, the new benchmark provides means to assist database experts to test and
choose optimizations with respect to specific workload requirements.
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Benchmark Creation

For the creation of CBTR as a benchmark for mixed OLTP and OLAP workloads,
existing benchmarks have been assessed in the context of today’s transactional and
analytical workloads. The benchmarks used widely in research and industry today
do not reflect current enterprise workloads. In respect thereof, relevance as one
important criterion to make a benchmark valuable for research and industry is not
fulfilled any longer.

CBTR was created based on the realistic data structures, operations and workload
of a widely used enterprise system, instead of using an existing benchmark
as the foundation, to gain relevancy. The queries within CBTR are based on
observations from companies. Experiences and lessons learned from the existing
benchmarks have been taken into consideration throughout the development of
the new benchmark, e.g., simplicity of the scenario to ensure comprehensibility,
verifiability, repeatability, and fairness.

To enable testing of varying workloads of OLTP and OLAP shares, workload
mix has been introduced as an additional benchmark parameter besides data set size
and load.

Analysis of Logical Database Schema Optimizations

The benchmark has been applied in evaluating database design decisions so far
used to optimize for one or the other dedicated workload. As a prerequisite to
evaluate the impact of database schema variants as part of logical database design,
the key differentiators facilitating today’s optimized database schemas for OLTP and
OLAP have been analyzed and summarized. These are mainly in the area of (de-)
normalization, that is, redundant data, derivable data, repeating groups, pre-joined
tables, or report tables.

Three database schema variants have been defined utilizing or avoiding the found
differentiators. These database schema variants have been tested using CBTR to
determine the performance impact of the found optimizations in different OLTP
and OLAP workload mixes.

Impact Evaluation

The observed behaviors of databases in the evaluation facilitate the validation of the
benchmark. As the workload mix is varied, databases start to behave differently.
This change of behavior can be explained based on the query processing strategies
of those databases and further knowledge about their data storage internals.

The application of CBTR yielded results that provide insights into database
behavior from different perspectives and show that the found database schema
optimizations have a significant impact on query and transaction performance with
up to two-digit speed-up factors. The different evaluation scenarios were:
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• Addition of different OLAP workloads to a constant base OLTP workload to
determine the performance impact of increasing the load of an OLTP system.

• Different database schema variants to evaluate the impact of database optimiza-
tions such as normalization, aggregates, or pre-joining of tables.

• Different database storage types to analyze if this factor is relevant for choosing
database schema optimizations.

• Variation of the OLAP and OLTP shares within a constant number of clients
to examine if database schema optimizations have different effects in different
workload situations.

• Response time and throughput filtered by the OLTP and OLAP perspective
to investigate if an optimization impacts individual components of a mixed
workload differently.

The evaluation of adding an OLAP workload to an existing OLTP workload has
shown a similar behavior for all tested database systems. Performance degrades
compared to a pure OLTP workload scenario. Yet, the benefits outweigh the
drawbacks as discussed and performance degradation is less pronounced in settings
with an already high OLTP workload. For instance, OLTP response times increase
by factors between 2 and 6 in a setting with 100 concurrent OLTP clients as the base
load, whereas response times of OLTP requests in low load situations increase by
factors up to eleven.

Concerning database design optimizations, different behaviors were observed (i)
in the different database systems tested and (ii) under diverse workload mixes. The
same database schema affects query performance differently (positive or negative)
depending on the workload mix and the DBMS used. For example, in the tested
disk-based column-oriented DBMS the normalized database schemas yielded best
performance for OLTP queries, while the document database schema accelerated
the OLAP queries. In the in-memory column-oriented DBMS, the same database
schema (1NF) provided best results for the OLTP and OLAP queries compared
to the given alternatives. This behavioral variance underlines the value of the
developed benchmark, which provides the method to test and analyze a database
system regarding a specific workload mix and creates a basis for optimization
decisions.

8.1 Discussion

The results of the evaluation have shown that to make a decision for or against
a specific database system or optimization for a workload, all aspects of the mixed
workload have to be considered in their combination. An average speed-up by factor
22 for the OLAP requests of a defined scenario that accepts a slight impairment of
OLTP request response times by factors less than two sounds promising from the
perspective of single requests. This argumentation may become flawed. The “may”
in the previous statement and whether the decision to speed up OLAP at the cost of
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OLTP performance really is wrong depends on the user requirements of the OLTP
system and the actual response times of OLTP requests.

As an example, a company whose representatives rely on OLTP response times
because of being in direct customer contact, e.g., on the telephone, is considered.
In this situation, the possibility to speed up OLAP at the cost of OLTP performance
has to be judged carefully. As long as the increase of response times stays
imperceptible, e.g., is in the range of micro up to milliseconds, the potential given
by the threshold of human perception can be used to enhance OLAP run times. For
example, the increase of response time for the entire execution of an OLTP request
and its display to the representative is acceptable for the representatives as long
as it stays between half a second and at most a second after an optimization for
OLAP requests is employed. A huge benefit for the OLAP users is created if such
an optimization pushes response times of OLAP requests below the threshold of one
second. “Delays of longer than one second will seem intrusive on the continuity of
thought.” [22]. Nielsen [153, Chap. 5] explains, that the threshold of one second is
the limit for a user’s flow of thought to stay uninterrupted, although the users notices
the delay. Yet, at this threshold the OLAP users can start to work interactively
without the system itself being the reason that they become distracted.

As soon as the speed-up of OLAP causes side effects that diminish OLTP
throughput or violate response time requirements, the decision has to be reevaluated
keeping in mind the business consequences, for example, stalled business processes
or reduced customer satisfaction if responses are not received immediately. The raw
query performance of specialized database systems that are developed for either
OLTP or OLAP currently prevails compared to the approach of a combined database
system. At one point, however, the decision has to be made if a landscape with
dedicated systems will be set up or if an integrated one is desired.

CBTR provides a basis to assess emerging systems regarding their ability to cope
with given workloads. Which workload share is actually defined for a measurement
depends on the party responsible for the measurements. In CBTR, workload shares
can be flexibly configured and thus they can be adapted to the requirements of any
company interested in assessing a specific scenario. To further guide the decision-
making process, a number of factors have been discovered in the discussions
throughout this thesis and during the application of the benchmark in the evaluation
of database schema optimizations. These factors have to be weighed to reach the
right decision according to given requirements.

Having a single source of truth like in a hybrid system restricts the introduction of
optimizations within data structures because an optimization positively affects either
OLTP or OLAP performance. Thus, optimizations have to be carefully chosen, e.g.,
based on performance thresholds and workload shares as discussed above.

Data extraction and synchronization is a necessary step to update data in an
analytical system that is separate from the operational system. Data preparation as
used in current analytical systems allows the introduction of optimizations to speed
up reporting. Finally, a separate analytical system and its ETL creates redundant data
that has to be managed. Increased resource usage through keeping redundant data
sets and running the ETL tasks is the smallest portion of the costs this introduces.
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Setting up the ETL process, operating, and maintaining it, causes the major share of
costs. In a unified OLTP and OLAP system, ETL is no longer necessary.

Data latency is the delay between the creation of data in the operational system
and its availability for analytical processing. In a hybrid OLTP and OLAP system,
this latency does not exist, as the actively used data source for both workload parts
is the same. In current analytical systems, data latency can range from real-time
availability of data to minutes, hours, days, or weeks. Real-time availability of
data in the analytical environment is bought dearly in the operational environment.
One strategy is to extend the transactions in the operational systems to include
the synchronization of data to the analytical system to achieve up-to-date data.
Naturally, this introduces overhead to transaction processing. Another strategy is to
synchronize the data immediately upon the commit of a transaction. Yet, the interval
to transport data and each data preparation step to enhance data for improved
reporting performance introduces a delay in which data ages.

Analytical flexibility is restricted in current analytical systems as data is prepared
to serve specific reporting needs. If new needs arise, existing structures have to be
adapted or new ones have to be created to serve them. The single source of truth in
a hybrid system that efficiently processes transactional as well as analytical requests
readily allows for the usage of any data item for reporting.

8.2 Future Work

The benchmark proposed in this work and its application in the evaluation of
database schema variation provides a foundation for the elaboration of strategies
to adjust database optimizations in mixed workload scenarios. Here, more research
is necessary to determine the factors that influence the decision if an optimization in
a specific workload mix is introduced or not. Basic factors such as the perceptibility
of changes that greatly improve the performance of one workload part, but slightly
impede the performance of the other workload part, or the number of users in
the workload shares and the impact of changes as seen from the sum of all these
users have been discussed in this work. Using these factors and priorities for them,
rules could be defined that control the usage of optimizations and the adaptation
of database schemas according to changes in the mixed workload going into the
direction of self-tuning databases for varying mixed OLTP and OLAP workloads.

The database schema of the proposed benchmark is in first normal form in
its current version, which is based on observations from real enterprise systems.
A lower degree of normalization implies additional overhead for OLTP to avoid
anomalies, e.g., through triggers that automatically update redundant data or
aggregates. Anomaly avoidance has not been considered in the current version of the
benchmark and no triggers have been defined so far. The logic to update redundant
data and aggregates is part of the business logic included in the transactions as taken
from the enterprise systems at the moment. These are keeping the data set valid. This
strategy has to be reevaluated and the benchmark has to be adapted if necessary.
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One approach is to define the triggers and introduce conformance requirements that
every benchmark run has to adhere to. Another approach is to exchange the database
schema with one of a higher degree of normalization to avoid data anomalies.

During the course of this work, the idea to include database schema varia-
tion as another dimension besides data set scaling and workload mix surfaced.
Consequently, the tool chain was designed in such a modular way that database
schema, transactions, and queries can be adapted or extended easily. Furthermore,
the database schema at a higher degree of normalization and the adaptation of
queries has already been defined as part of the evaluation of the impact of database
schema optimizations and the benchmark has been run on top of this database
schema. Thus, the exchange of the database schema has been implemented and
could be applied immediately.

CBTR uses throughput and response time as its current metrics and, thus,
provides performance measurement results. Performance is not the only dimension
of interest, though, and more measures, e.g., in the context of energy consumption
like in the TPC benchmarks, have to be presented to achieve a more complete picture
of a system.

As shortly raised above, restriction of optimizations is a topic that has to be
elaborated concretely. If results of benchmark runs are supposed to be fair and
comparable, especially if the tests are undertaken by different companies or research
groups, rules are necessary that restrict the available optimizations and methods
are needed to control their adherence, like the detailed reports in existing standard
benchmarks.

A research challenge that is not covered by hybrid or mixed workload OLTP
and OLAP systems themselves is reporting across several transactional systems and
other or even external data sources. This is a feature of major importance in today’s
analytical systems in large enterprises. Strategies, e.g., federated query processing,
might be introduced on top to simulate information extraction and integration from
multiple source systems.

CBTR and its tool chain developed as part of this thesis have been used already
in two industry projects to determine the overhead of virtualization in raw database
performance. In another industry project, CBTR is currently extended to simulate
and evaluate multi-tenancy mixed workload environments. Thus, the work in this
thesis has already provided a basis for evaluation projects in the industry and sparked
new work in the area of benchmarking.



Appendix A
Related Activities and Publications

Hybrid Architecture for OLTP and Operational Reporting

In [180], published at the International Workshop on Business Intelligence for
the Real-Time Enterprise (BIRTE), a first architecture that services operational
reporting on top of up-to-date transactional data was proposed. This architecture
is based on a row-oriented database that serves the conventional OLTP load and a
connected column-oriented data store, which holds a subset of the data in the row
store that is needed for operational reporting. Both data stores have the same logical
structure and to achieve up-to-date data in the column store it is updated within the
transaction. To allow for consumption of the transactional data in the column store
virtual cubes are proposed as a method for conventional warehousing environments.
Based on this work, a patent was filed in September 2008 [168].

Combining OLTP with OLAP

In [182], a detailed discussion motivates the use of unified, enterprise-wide data
stores, which allow for ad-hoc operational reporting on real-time business data
without the need of data extraction and loading into dedicated systems. An analysis
of the characteristics of real-time ATP as an example for a typical enterprise applica-
tion that can leverage in-memory column-oriented data storage to provide enhanced
functionality, e.g., real-time order rescheduling through on-the-fly aggregation for
every processed customer request, is provided in [206]. The idea of navigational
SQL, a language that provides constructs specifically tailored for data retrieval in
the context of operational reporting, such as a navigation operator that has explicit

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9,
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knowledge about join paths in a particular schema and gives the user an application
level view of the underlying tables has been introduced in [78]. A foray into a
different but adjacent direction of enterprise data management, looking into typical
operations in the area of multi-tenant databases and an analysis of how they are
wired together, was published in [79].



Appendix B
Implementation

Table B.1 gives an overview of the multi run statistics report. The response times
are provided in milliseconds. The key figures are:

• Schema: benchmark run variant for schema impact evaluation
• Clientconfig: a-b with a as the number of OLTP clients and b the number of

OLAP clients
• Lquart/uquart: lower quartile/upper quartile
• Max95: the 95th percentile
• Avg95: average without the 5 % highest values

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9,
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# database meta information
host = <host ip>
dbname= <name of the database>
dbuser = <database user>
dbpassword = <password for database user>
database = <name of the database product, e.g. mysql>

# location of the query skeletons and parameters
trans_dir = <directory>

# workload configuration
number_mixed_clients = <0..>
number_OLAP_clients = <0..>
number_OLTP_clients = <0..>
OLAP_share = <0..100>
rOLTP_share = <0..100>

# benchmark run configuration
run_count = <number of maximum queries per client>
early_terminate = <true/false>
warm_up_time = <time in seconds, 0 if to be skipped>
benchmark_run_time = <time in seconds, if 0 run_count

terminates the benchmark run>

# date and time format that the database uses
date_format = <yyyy-MM-dd>
time_format = <hh:mm:ss>

# comments to include in the result output
data_set = <...>
comments = <...>

Listing B.1 Benchmark driver configuration
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#NumClients[Mix-Trans-Analyt];Database;OLAPShare;ROLTPShare;NumRuns;runID;
DataSet;

IndexComments
*2[0-1-1];xdb;0;50;1000000;2011-12-11_08-45-23;

1NF;
#testRunID; clientID; actionName; starttime;

endtime; runtime; columns; rows; statementtype; actionID;
actionParams

2011-12-11_08-45-23;0;[Action];OLAP;DailyFlash;120313;
120317;4;4;2;SELECT;8509;
‘2003-11-26’

2011-12-11_08-45-23;1;[NewSalesOrder_2004-01-07_04:05:31];wOLTP;NewSalesOrder
;120308;

120320;12;0;1;INSERT;0;
INSERT INTO VBPA VALUES (‘800’,‘210000009720’,‘000000’,...

2011-12-11_08-45-23;0;[Action];OLAP;OrderDeliveryFullfillment;120317;
120331;14;6;4;SELECT;8510;
‘2001-04-01’ and ‘2001-04-30’

2011-12-11_08-45-23;1;[NewSalesOrder_2004-01-07_04:05:31];wOLTP;NewSalesOrder
;120332;

120337;5;165;1;SELECT;0;
SELECT * FROM KNA1 WHERE KUNNR = ‘0000001033’

2011-12-11_08-45-23;1;[NewSalesOrder_2004-01-07_04:05:31];wOLTP;NewSalesOrder
;120337;

120338;1;3;1;SELECT;0;
SELECT VKORG,VTWEG,SPART FROM KNVV WHERE KUNNR= 0000001033’

[...]
2011-12-11_08-45-23;1;[Action];rOLTP;ShowOpenItems;121215;

121220;5;4;15;SELECT;865;
‘2003-05-01’ and ‘2003-05-31’

[...]

Listing B.2 Excerpt from a benchmark run result log



Appendix C
Evaluation Results

The evaluation results of the impact of adding OLAP to OLTP are provided in
Table C.1. The throughput is normalized per DBMS and average response time is
normalized per DBMS and workload component.

Table C.2 provides an excerpt of the results of the impact of database schema
variation regarding response time. The response time is normalized per DBMS.
Table C.3 provides an excerpt of the results concerning the throughput. Tables C.4
and C.5 give an overview of response times and throughput respectively for different
workload mixes.

A. Bog, Benchmarking Transaction and Analytical Processing Systems,
In-Memory Data Management Research, DOI 10.1007/978-3-642-38070-9,
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Table C.5 Normalized throughput of workload mixes

# OLAP clients 1NF 3NF Document Snowflake

RD1 20 0.1453 1.0000 0.2512 0.2044
25 0.1700 0.1511 0.5278 0.1602
40 0.1698 0.1882 0.2902 0.3467
50 0.0559 0.0042 0.3388 0.1043
60 0.1008 0.0332 0.1885 0.9443
75 0.1930 0.2897 0.5282 0.3541
80 0.8213 0.7844 0.1534 0.3222

CD1 20 1.0000 0.9941 0.7010 0.2776
25 0.9793 0.9599 0.6895 0.2643
40 0.8693 0.8514 0.6122 0.2232
50 0.7526 0.7858 0.5291 0.1911
60 0.6468 0.7219 0.5454 0.1589
75 0.4615 0.5847 0.4694 0.1194
80 0.3784 0.5256 0.4163 0.1090

CM1 20 1.0000 0.7248 0.4592 0.3307
25 0.9293 0.6216 0.4156 0.3003
40 0.8064 0.3793 0.3364 0.2832
50 0.7579 0.3403 0.3281 0.2859
60 0.7149 0.2648 0.3127 0.3037
75 0.6354 0.1942 0.2908 0.3234
80 0.6109 0.1853 0.2838 0.3324
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14. A. Bog, J. Schaffner, J. Krüger, A composite benchmark for online transaction processing
and operational reporting, in IEEE Symposium on Advanced Management of Information for
Globalized Enterprises (AMIGE’08), Tianjin, 2008, pp. 1–5

15. A. Bog, M. Domschke, J. Müller, A. Zeier, A framework for simulating combined OLTP
and OLAP workloads, in 16th International Conference on Industrial Engineering and
Engineering Management, IE&EM ’09, Beijing, 2009, pp. 1675–1678

16. A. Bog, H. Plattner, A. Zeier, A mixed transaction processing and operational reporting
benchmark. Inf. Syst. Front. 13(3), 321–335 (2011). Kluwer Academic, Hingham

17. A. Bog, K. Sachs, A. Zeier, Benchmarking database design for mixed OLTP and OLAP
workloads, in Proceedings of the Second Joint WOSP/SIPEW International Conference on
Performance Engineering, ICPE ’11, Karlsruhe (ACM, New York, 2011), pp. 417–418

18. A. Bog, K. Sachs, A. Zeier, H. Plattner, Normalization in a mixed OLTP and OLAP workload
scenario, in Third TPC Technology Conference on Performance Evaluation & Benchmarking
(TPCTC), Seattle, 2011

19. A. Bog, K. Sachs, H. Plattner, Interactive performance monitoring of a composite OLTP and
OLAP workload, in Proceedings of the 2012 International Conference on Management of
Data, SIGMOD ’12, Scottsdale (ACM, New York, 2012), pp. 645–648
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